题目内容

8.如图,F1,F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(1,$\sqrt{3}$),若△ABF2为等边三角形,则△BF1F2的面积为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 根据双曲线的定义算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等边三角形得∠F1AF2=120°,利用余弦定理算出c2=7a2,结合A(1,$\sqrt{3}$)在双曲线上,即可得出结论.

解答 解:根据双曲线的定义,可得|AF1|-|AF2|=2a,
∵△ABF2是等边三角形,即|AF2|=|AB|
∴|BF1|=2a
又∵|BF2|-|BF1|=2a,
∴|BF2|=|BF1|+2a=4a,
∵△BF1F2中,|BF1|=2a,|BF2|=4a,∠F1BF2=120°
∴|F1F2|2=|BF1|2+|BF2|2-2|BF1|•|BF2|cos120°
即4c2=4a2+16a2-2×2a×4a×(-$\frac{1}{2}$)=28a2
解得c2=7a2
∴b2=c2-a2=6a2,所以双曲线方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{6{a}^{2}}$=1,
又A(1,$\sqrt{3}$),在双曲线上,所以$\frac{1}{{a}^{2}}-\frac{3}{6{a}^{2}}$=1,解得a=$\frac{\sqrt{2}}{2}$.
所以△BF1F2的面积为$\frac{1}{2}×2a×4a×sin120°$=$2\sqrt{3}{a}^{2}$=$\sqrt{3}$,
故选C.

点评 本题主要考查双曲线的定义和简单几何性质等知识,根据条件求出a,b的关系是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网