题目内容

在△ABC中,已知(a+b+c)(b+c-a)=3bc,且sinA=2sinB•cosC,试判断△ABC的形状.
考点:正弦定理,余弦定理
专题:解三角形
分析:第一个等式变形后,利用余弦定理求出cosA的值,进而求出A的度数,第二个等式化简,利用两角和与差的正弦函数公式变形,得到B=C,即可确定出三角形形状.
解答: 解:将(a+b+c)(b+c-a)=3bc,
整理得:(b+c)2-a2=3bc,即a2=b2+c2-bc,
由余弦定理得:cosA=
1
2

∵A为三角形内角,∴A=
π
3

∵sinA=2sinBcosC,且sinA=sin(B+C)=sinBcosC+cosBsinC,
∴sinBcosC-cosBsinC=sin(B-C)=0,
∴B-C=0,即B=C,
∵B+C=
3

∴A=B=C=
π
3

则△ABC为等边三角形.
点评:此题考查了正弦、余弦定理,两角和与差的正弦函数公式,熟练掌握定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网