题目内容
1.圆x2+y2-6x+4y=3的圆心坐标与半径是( )| A. | $(-3,2)\;\;\;\;\;\;\;\sqrt{13}$ | B. | $(3,-2)\;\;\;\;\;\;\;\sqrt{13}$ | C. | (-3,2)4 | D. | (3,-2)4 |
分析 由题意将圆的方程化为标准方程,再求出圆心坐标和半径即可.
解答 解:将方程x2+y2-6x+4y=3化为标准方程:(x-3)2+(y+2)2=16,
则圆心坐标为(3,-2),半径为4.
故选:D.
点评 本题考查了将圆的一般方程用配方法化为标准方程,进而求出圆心坐标和半径,是基础题.
练习册系列答案
相关题目
12.设a,b∈R,则“$\frac{{a}^{2}}{a-b}$<0”是“a<b”的( )条件.
| A. | 充分而不必要 | B. | 必要而不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
16.已知角θ的终边经过点$P(-\frac{1}{2},\frac{{\sqrt{3}}}{2})$,则tanθ的值为( )
| A. | $-\sqrt{3}$ | B. | -$\frac{{\sqrt{3}}}{3}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
10.
某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示x与y之间存在线性相关关系,求y关于x的回归方程;
(Ⅲ)若广告投入6万元时,实际销售收益为7.3万元,求残差$\hat e$.
附:${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-}){(y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})^{2}}$=$\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{\sum_{i=1}^{n}{x}_{i}^{2}-{{n}_{x}^{-}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| 广告投入x/万元 | 1 | 2 | 3 | 4 | 5 |
| 销售收益y/万元 | 2 | 3 | 2 | 5 | 7 |
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示x与y之间存在线性相关关系,求y关于x的回归方程;
(Ⅲ)若广告投入6万元时,实际销售收益为7.3万元,求残差$\hat e$.
附:${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-}){(y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})^{2}}$=$\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{\sum_{i=1}^{n}{x}_{i}^{2}-{{n}_{x}^{-}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.