题目内容
已知数列{an}是等比数列,且3a1,2a2,a3成等差数列.
(1)若a2011=2011,试求a2013的值;
(2)若a1=3,公比q≠1,设bn=
,求数列{bn}的前n项和Tn.
(1)若a2011=2011,试求a2013的值;
(2)若a1=3,公比q≠1,设bn=
| 1 |
| lnan•lnan+1 |
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)由已知条件得4a1q=3a1+a1q2,解得q=1或q=3.由此能求出结果.
(2)由(1)知an=3n,从而得到bn=
=
(
-
),由此利用裂项求和法能求出数列{bn}的前n项和Tn.
(2)由(1)知an=3n,从而得到bn=
| 1 |
| lnan•lnan+1 |
| 1 |
| (ln3)2 |
| 1 |
| n |
| 1 |
| n+1 |
解答:
解:(1)∵数列{an}是等比数列,且3a1,2a2,a3成等差数列.
∴4a1q=3a1+a1q2,整理,得q2-4q+3=0,解得q=1或q=3.
∵a2011=,
∴a2013=2011或aa2013=2011×9=18099.
(2)∵a1=3,公比q≠1,由(1)知an=3×3n-1=3n,
则bn=
=
=
(
-
),
∴Tn=
(1-
+
-
+…+
-
)
=
(1-
)
=
.
∴4a1q=3a1+a1q2,整理,得q2-4q+3=0,解得q=1或q=3.
∵a2011=,
∴a2013=2011或aa2013=2011×9=18099.
(2)∵a1=3,公比q≠1,由(1)知an=3×3n-1=3n,
则bn=
| 1 |
| lnan•lnan+1 |
| 1 |
| nln3•(n+1)ln3 |
| 1 |
| (ln3)2 |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=
| 1 |
| (ln3)2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 1 |
| (ln3)2 |
| 1 |
| n+1 |
=
| n |
| (n+1)(ln3)2 |
点评:本题考查数列的第2013项的求法,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目