题目内容

16.已知函数f(x)=$\frac{lnx+ax+1}{x}$.
(1)若对任意x>0,f(x)<0恒成立,求实数a的取值范围;
(2)若函数f(x)有两个不同的零点x1,x2(x1<x2),证明:$\frac{{{x}_{1}}^{2}}{{x}_{2}}$+$\frac{{{x}_{2}}^{2}}{{x}_{1}}$>2.

分析 (1)求出导函数,根据导函数判断函数的单调性,得出函数的最值,进而求出a的范围;
(2)求出导函数,根据极值点判断函数的零点位置,对零点分类讨论,构造函数,利用放缩法,均值定理证明结论成立.

解答 解:(1)f(x)=$\frac{lnx+ax+1}{x}$=$\frac{lnx}{x}$+a+$\frac{1}{x}$.
f''(x)=-$\frac{lnx}{{x}^{2}}$,
∴f(x)在(0,l)上递增,(1,+∞)上递减,
∴f(x)≤f(1)=a+1,
∴a+1<0,∴a<-1;
(2)证明:由(1)知,两个不同零点x1∈(0,1),x2∈(1,+∞),
若x2∈(1,2),则2-x2∈(0,1),
设g(x)=f(x)-f(2-x)=$\frac{lnx}{x}$+$\frac{1}{x}$-$\frac{ln(2-x)}{2-x}$-$\frac{1}{2-x}$,
则当x∈(0,1)时,
g'(x)=-$\frac{lnx}{{x}^{2}}$-$\frac{ln(2-x)}{{(2-x)}^{2}}$>-$\frac{lnx}{{x}^{2}}$-$\frac{ln(2-x)}{{x}^{2}}$=-$\frac{ln({-(x-1)}^{2}+1]}{{x}^{2}}$>0,
∴g(x)在(0,1)上递增,
∴g(x)<g(1)=0,
∴f(x)<f(2-x),
∴f(2-x1)>f(x1)=f(x2),
∴(2-x1)<x2,∴2<x1+x2
若x2∈(2,+∞),可知2<x1+x2,显然成立,
又$\frac{{{x}_{1}}^{2}}{{x}_{2}}$+x2≥2$\sqrt{\frac{{{x}_{1}}^{2}}{{x}_{2}}{•x}_{2}}$=2x1,同理可得$\frac{{{x}_{2}}^{2}}{{x}_{1}}$+x1≥2x2
以上两式相加得:$\frac{{{x}_{1}}^{2}}{{x}_{2}}$+$\frac{{{x}_{2}}^{2}}{{x}_{1}}$+x1+x2≥2(x1+x2),
故:$\frac{{{x}_{1}}^{2}}{{x}_{2}}$+$\frac{{{x}_{2}}^{2}}{{x}_{1}}$≥(x1+x2)>2.

点评 本题考查了导函数的应用,最值问题的转化思想,难点是对参数的分类讨论和均值定理的应用.

练习册系列答案
相关题目
10.某工厂为制定下一阶段生产某种产品的方案,工厂技术部门开展了两项统计,其一是对该厂48名师傅生产的产品精度情况进行了调查,得到如下的2×2列联表1(单位:个);其二是对某师傅加工零件个数n1(单位:个)和加工时间t1(单位:小时,i-1,2,…6)作了6次试验,并对获得的数据作了初步处理,得到下面的散点图及一些统计量的值如表2.
表1:48名师傅生产的产品精度统计表(单位:个)
类别达到精品级未达到精品级总计
高级技工22628
中级技工101020
总计321648
表2:
 $\overline{n}$=$\frac{1}{6}$$\sum_{i=1}^{6}{n}_{i}$  $\overline{t}$=$\frac{1}{6}$$\sum_{i=1}^{6}{t}_{i}$$\sum_{i=1}^{6}{n}_{i}$ 2$\sum_{i=1}^{6}{t}_{i}$ 2 $\sum_{i=1}^{6}{n}_{i}{t}_{i}$$\sum_{i=1}^{6}$(ni-$\overline{n}$)2 $\sum_{i=1}^{6}$(ti-$\overline{t}$)2  $\sum_{i=1}^{6}$(ni-$\overline{n}$)(ti-$\overline{t}$) 
4.54.125139109.562112.7517.57.46811.375
(1)判断是否有95%的把握人物产品达到精品级与师傅的职称有关?说明你的理由;
(2)根据散点图判断t与n是否具有线性相关关系?若具有,依据表中数据求出t关于n的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,并预测该师傅加工10个零件需要多少时间?
附:(1)参考临界值有:
参考公式:K2=$\frac{m(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中m=a+b+c+d.
(2)对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归线$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$的斜率和截距的最小二乘估计分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网