题目内容

已知函数f(x)=lnx+2x-6,则它的零点所在的区间为(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)
考点:函数零点的判定定理
专题:函数的性质及应用
分析:结合函数的单调性,判断函数在每个区间端点处函数值的符号,再利用零点定理进行判断即可.
解答: 解:易知函数f(x)=lnx+2x-6,在定义域R+上单调递增.
因为当x→0时,f(x)→-∞;f(1)=-4<0;f(2)=ln2-2<0;f(3)=ln3>0;f(4)=ln4+2>0.
可见f(2)•f(3)<0,故函数在(2,3)上有且只有一个零点.
故选C.
点评:本题考查了函数零点的存在性定理,一般是从函数的单调性、函数在区间端点处的函数值符号等方面进行分析,最后利用零点存在性定理确定零点所在区间.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网