题目内容
已知函数f(x)=lnx+2x-6,则它的零点所在的区间为( )
| A、(0,1) |
| B、(1,2) |
| C、(2,3) |
| D、(3,4) |
考点:函数零点的判定定理
专题:函数的性质及应用
分析:结合函数的单调性,判断函数在每个区间端点处函数值的符号,再利用零点定理进行判断即可.
解答:
解:易知函数f(x)=lnx+2x-6,在定义域R+上单调递增.
因为当x→0时,f(x)→-∞;f(1)=-4<0;f(2)=ln2-2<0;f(3)=ln3>0;f(4)=ln4+2>0.
可见f(2)•f(3)<0,故函数在(2,3)上有且只有一个零点.
故选C.
因为当x→0时,f(x)→-∞;f(1)=-4<0;f(2)=ln2-2<0;f(3)=ln3>0;f(4)=ln4+2>0.
可见f(2)•f(3)<0,故函数在(2,3)上有且只有一个零点.
故选C.
点评:本题考查了函数零点的存在性定理,一般是从函数的单调性、函数在区间端点处的函数值符号等方面进行分析,最后利用零点存在性定理确定零点所在区间.
练习册系列答案
相关题目
若a,b,c为实数,且a<b<0,则下列命题正确的是( )
| A、ac2<bc2 | ||||
B、
| ||||
C、
| ||||
| D、a2>ab>b2 |
已知f(x)=
,x∈R,求f(
)+f(
)+f(
)+…+f(
)=( )
| 4x |
| 4x+2 |
| 1 |
| 1001 |
| 2 |
| 1001 |
| 3 |
| 1001 |
| 1000 |
| 1001 |
| A、499.5 | B、500.5 |
| C、500 | D、499 |
函数f(x)=log
(x2-6x-7)的单调递增区间为( )
| 1 |
| 2 |
| A、(7,+∞) |
| B、(-∞,3) |
| C、(3,+∞) |
| D、(-∞,-1) |