题目内容

12.函数$y=2\sqrt{x+3}+5\sqrt{1-x}$的最大值为2$\sqrt{29}$.

分析 由柯西不等式得:[($\sqrt{x+3})^{2}$2+($\sqrt{1-x})^{2}$2][22+52]$≥(2\sqrt{x+3}+5\sqrt{1-x})^{2}$即可求解.

解答 解:由柯西不等式得:[($\sqrt{x+3})^{2}$2+($\sqrt{1-x})^{2}$2][22+52]$≥(2\sqrt{x+3}+5\sqrt{1-x})^{2}$
⇒4×29≥(5$\sqrt{1-x}$+2$\sqrt{x+3}$)2,⇒$5\sqrt{1-x}+2\sqrt{x+3}$$≤2\sqrt{29}$
故答案为:$2\sqrt{29}$.

点评 本题考查了柯西不等式的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网