题目内容
9.计算与化简(1)(1$\frac{1}{2}$)0-(1-0.5-2)÷($\frac{27}{8}$)${\;}^{\frac{2}{3}}$
(2)$\sqrt{2\sqrt{2\sqrt{2}}}$.
分析 (1)根据指数幂的运算性质可得,
(2)根据根指数的运算性质可得.
解答 解:(1)解析:原式=1-(1-22)÷$(\frac{3}{2})^{3×\frac{2}{3}}$=1-(-3)÷$\frac{9}{4}$=1+3×$\frac{4}{9}$=1+$\frac{4}{3}$=$\frac{7}{3}$.
(2)原式=$\sqrt{2\sqrt{{2}^{\frac{3}{2}}}}$=$\sqrt{{2}^{\frac{7}{4}}}$=${2}^{\frac{7}{8}}$.
点评 本题考查了指数幂的运算性质,属于基础题.
练习册系列答案
相关题目
17.在△ABC中,D是BC中点,E是AB中点,CE交AD于点F,若$\overrightarrow{EF}=λ\overrightarrow{AB}+u\overrightarrow{AC}$,则λ+u=( )
| A. | $-\frac{1}{6}$ | B. | $\frac{1}{6}$ | C. | $-\frac{1}{3}$ | D. | 1 |
4.下列关系中正确的是( )
| A. | ($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$ | B. | ($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<2${\;}^{\frac{2}{3}}$ | ||
| C. | 2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<($\frac{1}{2}$)${\;}^{\frac{2}{3}}$ | D. | 2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$ |
18.已知抛物线C:y2=4x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{FP}=5\overrightarrow{FQ}$,则|QF|=( )
| A. | $\frac{7}{2}$ | B. | $\frac{8}{5}$ | C. | $\frac{5}{2}$ | D. | 2 |