题目内容

18.已知抛物线C:y2=4x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{FP}=5\overrightarrow{FQ}$,则|QF|=(  )
A.$\frac{7}{2}$B.$\frac{8}{5}$C.$\frac{5}{2}$D.2

分析 求得直线PF的方程,与y2=4x联立可得x=$\frac{3}{5}$,利用|QF|=d可求.

解答 解:设Q到l的距离为d,则|QF|=d,
∵$\overrightarrow{FP}=5\overrightarrow{FQ}$,
∴|PQ|=4d,
∴直线PF的斜率为±$\sqrt{15}$
∵F(1,0),
∴直线PF的方程为y=±$\sqrt{15}$(x-1),
与y2=4x联立可得x=$\frac{3}{5}$(另一根舍去),
∴|QF|=d=1+$\frac{3}{5}$=$\frac{8}{5}$
故选B.

点评 本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网