题目内容
18.已知抛物线C:y2=4x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{FP}=5\overrightarrow{FQ}$,则|QF|=( )| A. | $\frac{7}{2}$ | B. | $\frac{8}{5}$ | C. | $\frac{5}{2}$ | D. | 2 |
分析 求得直线PF的方程,与y2=4x联立可得x=$\frac{3}{5}$,利用|QF|=d可求.
解答 解:设Q到l的距离为d,则|QF|=d,
∵$\overrightarrow{FP}=5\overrightarrow{FQ}$,
∴|PQ|=4d,
∴直线PF的斜率为±$\sqrt{15}$
∵F(1,0),
∴直线PF的方程为y=±$\sqrt{15}$(x-1),
与y2=4x联立可得x=$\frac{3}{5}$(另一根舍去),
∴|QF|=d=1+$\frac{3}{5}$=$\frac{8}{5}$
故选B.
点评 本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.
练习册系列答案
相关题目
6.下列有关命题的说法正确的是( )
| A. | 命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1” | |
| B. | “x=-1”是“x2-5x-6=0”的必要不充分条件 | |
| C. | 命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0” | |
| D. | 命题“若x>1,则$\frac{1}{x}$<1”的逆否命题为真命题 |
10.一个袋中装有大小相同的5个白球和3个红球,现在不放回的取2次球,每次取出一个球,记“第1次拿出的是白球”为事件A,“第2次拿出的是白球”为事件B,则P(B|A)是( )
| A. | $\frac{5}{8}$ | B. | $\frac{5}{16}$ | C. | $\frac{4}{7}$ | D. | $\frac{5}{14}$ |