题目内容
1.计算定积分(1)${∫}_{-1}^{1}$(x2+cosx)dx
(2)${∫}_{-2}^{2}$$(x+\sqrt{4-{x^2}})dx}$.
分析 求出原函数,即可求出定积分.
解答 解:(1)${∫}_{-1}^{1}$(x2+cosx)dx=($\frac{1}{3}{x}^{3}+sinx$)${|}_{-1}^{1}$=$\frac{2}{3}$+2sin1;
(2)${∫}_{-2}^{2}$$(x+\sqrt{4-{x^2}})dx}$=$\frac{1}{2}{x}^{2}{|}_{-2}^{2}$+${∫}_{-2}^{2}\sqrt{4-{x}^{2}}dx$=2π.
点评 本题考查定积分知识,考查学生的计算能力,确定原函数是关键.
练习册系列答案
相关题目
11.设函数$f(x)=x-\frac{1}{x}$,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是 ( )
| A. | m<-1或0<m<1 | B. | 0<m<1 | C. | m<-1 | D. | -1<m<0 |
12.若$α∈(0,\frac{π}{2})$,若$cos(α+\frac{π}{6})=\frac{4}{5}$,则$sin(2α+\frac{π}{3})$的值为( )
| A. | $\frac{12}{25}$ | B. | $\frac{24}{25}$ | C. | $-\frac{24}{25}$ | D. | $-\frac{12}{25}$ |
6.下列有关命题的说法正确的是( )
| A. | 命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1” | |
| B. | “x=-1”是“x2-5x-6=0”的必要不充分条件 | |
| C. | 命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0” | |
| D. | 命题“若x>1,则$\frac{1}{x}$<1”的逆否命题为真命题 |
10.一个袋中装有大小相同的5个白球和3个红球,现在不放回的取2次球,每次取出一个球,记“第1次拿出的是白球”为事件A,“第2次拿出的是白球”为事件B,则P(B|A)是( )
| A. | $\frac{5}{8}$ | B. | $\frac{5}{16}$ | C. | $\frac{4}{7}$ | D. | $\frac{5}{14}$ |
11.
已知正三棱柱(底面是正三角形,且侧棱与底面垂直的棱柱)ABC-A1B1C1体积为$\frac{9}{4}$,底面边长为$\sqrt{3}$.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )
| A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |