题目内容

1.计算定积分
(1)${∫}_{-1}^{1}$(x2+cosx)dx
(2)${∫}_{-2}^{2}$$(x+\sqrt{4-{x^2}})dx}$.

分析 求出原函数,即可求出定积分.

解答 解:(1)${∫}_{-1}^{1}$(x2+cosx)dx=($\frac{1}{3}{x}^{3}+sinx$)${|}_{-1}^{1}$=$\frac{2}{3}$+2sin1;
(2)${∫}_{-2}^{2}$$(x+\sqrt{4-{x^2}})dx}$=$\frac{1}{2}{x}^{2}{|}_{-2}^{2}$+${∫}_{-2}^{2}\sqrt{4-{x}^{2}}dx$=2π.

点评 本题考查定积分知识,考查学生的计算能力,确定原函数是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网