题目内容

函数f(x)=ax2+bx+c,若f(1)<0,f(2)>0,则f(x)在(1,2)上零点的个数为(  )
A、至多有一个
B、有一个或两个
C、有且仅有一个
D、一个也没有
考点:函数零点的判定定理
专题:函数的性质及应用
分析:结合函数的图象进行判断,由f(1)<0,f(2)>0可知二次函数的图象在(1,2)之间有且只有一个交点.
解答: 解:结合二次函数的图象可知:函数f(x)的图象与x轴在(1,2)上有且只有一个交点.

故选C.
点评:本题考查的是利用图象研究函数零点的方法.要注意函数图象实际上反映的是函数的性质,因此必须把图象所对应的函数性质先了解清楚再作图象.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网