ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýy=f£¨x£©£¬x¡ÊD£¬Èç¹û¶ÔÓÚ¶¨ÒåÓòDÄÚµÄÈÎÒâʵÊýx£¬¶ÔÓÚ¸ø¶¨µÄ·ÇÁã³£Êým£¬×Ü´æÔÚ·ÇÁã³£ÊýT£¬ºãÓÐf£¨x+T£©£¾m•f£¨x£©³ÉÁ¢£¬Ôò³Æº¯Êýf£¨x£©ÊÇDÉϵÄm¼¶ÀàÔöÖÜÆÚº¯Êý£¬ÖÜÆÚΪT£®ÈôºãÓÐf£¨x+T£©=m•f£¨x£©³ÉÁ¢£¬Ôò³Æº¯Êýf£¨x£©ÊÇDÉϵÄm¼¶ÀàÖÜÆÚº¯Êý£¬ÖÜÆÚΪT£®
£¨1£©ÒÑÖªº¯Êýf£¨x£©=-x2+axÊÇ[3£¬+¡Þ£©ÉϵÄÖÜÆÚΪ1µÄ2¼¶ÀàÔöÖÜÆÚº¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©ÒÑÖªT=1£¬y=f£¨x£©ÊÇ[0£¬+¡Þ£©ÉÏm¼¶ÀàÖÜÆÚº¯Êý£¬ÇÒy=f£¨x£©ÊÇ[0£¬+¡Þ£©Éϵĵ¥µ÷µÝÔöº¯Êý£¬µ±x¡Ê[0£¬1£©Ê±£¬f£¨x£©=2x£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨3£©ÊÇ·ñ´æÔÚʵÊýk£¬Ê¹º¯Êýf£¨x£©=coskxÊÇRÉϵÄÖÜÆÚΪTµÄT¼¶ÀàÖÜÆÚº¯Êý£¬Èô´æÔÚ£¬Çó³öʵÊýkºÍTµÄÖµ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨1£©ÒÑÖªº¯Êýf£¨x£©=-x2+axÊÇ[3£¬+¡Þ£©ÉϵÄÖÜÆÚΪ1µÄ2¼¶ÀàÔöÖÜÆÚº¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©ÒÑÖªT=1£¬y=f£¨x£©ÊÇ[0£¬+¡Þ£©ÉÏm¼¶ÀàÖÜÆÚº¯Êý£¬ÇÒy=f£¨x£©ÊÇ[0£¬+¡Þ£©Éϵĵ¥µ÷µÝÔöº¯Êý£¬µ±x¡Ê[0£¬1£©Ê±£¬f£¨x£©=2x£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨3£©ÊÇ·ñ´æÔÚʵÊýk£¬Ê¹º¯Êýf£¨x£©=coskxÊÇRÉϵÄÖÜÆÚΪTµÄT¼¶ÀàÖÜÆÚº¯Êý£¬Èô´æÔÚ£¬Çó³öʵÊýkºÍTµÄÖµ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºº¯ÊýµÄÖÜÆÚÐÔ,½øÐмòµ¥µÄºÏÇéÍÆÀí
רÌ⣺ӦÓÃÌâ,ж¨Òå
·ÖÎö£º£¨1£©¸ù¾ÝÌâÒâ-£¨x+1£©2+a£¨x+1£©£¾2£¨-2+ax£©¶ÔÒ»ÇÐ[3£¬+¡Þ£©ºã³ÉÁ¢£¬×ª»¯Îªa£¼
=
=£¨x-1£©-
£¬ÀûÓûù±¾²»µÈʽÇó½â¼´¿É£®
£¨2£©·ÖÀàÌÖÂÛfµÃ³öf£¨x£©ÔÚ[0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬m£¾0ÇÒmn•2n-n£¾mn-1•2n-£¨n-1£©£¬¼´m¡Ý2£®
£¨3£©µ±x¡Ê[4n£¬4n+4]£¬n¡ÊZʱ£¬f£¨x£©=mf£¨x-4£©=¡=mnf£¨x-4n£©=mn[£¨x-4n£©2-4£¨x-4n£©]£¬·ÖÀàµÃ³ö£º-1¡Üm£¼0»ò0£¼m¡Ü1£®
| x2-2x-1 |
| x-1 |
| (x-1)2-2 |
| x-1 |
| 2 |
| x-1 |
£¨2£©·ÖÀàÌÖÂÛfµÃ³öf£¨x£©ÔÚ[0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬m£¾0ÇÒmn•2n-n£¾mn-1•2n-£¨n-1£©£¬¼´m¡Ý2£®
£¨3£©µ±x¡Ê[4n£¬4n+4]£¬n¡ÊZʱ£¬f£¨x£©=mf£¨x-4£©=¡=mnf£¨x-4n£©=mn[£¨x-4n£©2-4£¨x-4n£©]£¬·ÖÀàµÃ³ö£º-1¡Üm£¼0»ò0£¼m¡Ü1£®
½â´ð£º
½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£ºf£¨x+1£©£¾2f£¨x£©£¬
¼´-£¨x+1£©2+a£¨x+1£©£¾2£¨-2+ax£©¶ÔÒ»ÇÐ[3£¬+¡Þ£©ºã³ÉÁ¢£¬
£¨x-1£©a£¼x2-2x-1£¬
¡ßx¡Ê[3£¬+¡Þ£©
¡àa£¼
=
=£¨x-1£©-
£¬
Áîx-1=t£¬Ôòt¡Ê[2£¬+¡Þ£©£¬
g£¨x£©=t-
ÔÚ[2£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
¡àg£¨t£©min=g£¨2£©=1£¬
¡àa£¼1£®
£¨2£©¡ßx¡Ê[0£¬1£©Ê±£¬f£¨x£©=2x£¬
¡àµ±x¡Ê[1£¬2£©Ê±£¬f£¨x£©=mf£¨x-1£©=m•2x-1£¬
µ±x¡Ê[n£¬n+1]ʱ£¬f£¨x£©=mf£¨x-1£©=m2f£¨x-2£©=¡=mnf£¨x-n£©=mn•2x-n£¬
¼´x¡Ê[n£¬n+1£©Ê±£¬f£¨x£©=mn•2x-n£¬n¡ÊN*£¬
¡ßf£¨x£©ÔÚ[0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
¡àm£¾0ÇÒmn•2n-n£¾mn-1•2n-£¨n-1£©£¬¼´m¡Ý2£®
£¨3£©ÎÊÌ⣨¢ñ£©¡ßµ±x¡Ê[0£¬4]ʱ£¬y¡Ê[-4£¬0]£¬ÇÒÓÐf£¨x+4£©=mf£¨x£©£¬
¡àµ±x¡Ê[4n£¬4n+4]£¬n¡ÊZʱ£¬
f£¨x£©=mf£¨x-4£©=¡=mnf£¨x-4n£©=mn[£¨x-4n£©2-4£¨x-4n£©]£¬
µ±0£¼m¡Ü1ʱ£¬f£¨x£©¡Ê[-4£¬0]£»
µ±-1£¼m£¼0ʱ£¬f£¨x£©¡Ê[-4£¬-4m]£»
µ±m=-1ʱ£¬f£¨x£©¡Ê[-4£¬4]£»
µ±m£¾1ʱ£¬f£¨x£©¡Ê£¨-¡Þ£¬0£©£»
µ±m£¼-1ʱ£¬f£¨x£©¡Ê£¨-¡Þ£¬+¡Þ£©£»
×ÛÉÏ¿ÉÖª£º-1¡Üm£¼0»ò0£¼m¡Ü1£®
ÎÊÌ⣨¢ò£©£ºÓÉÒÑÖª£¬ÓÐf£¨x+T£©=T•f£¨x£©¶ÔÒ»ÇÐʵÊýxºã³ÉÁ¢£¬
¼´cosk£¨x+T£©=Tcoskx¶ÔÒ»ÇÐʵÊýºã³ÉÁ¢£¬
µ±k=0ʱ£¬T=1£»
µ±k¡Ù0ʱ£¬¡ßx¡ÊR£¬¡àkx¡ÊR£¬kx+kT¡ÊR£¬ÓÚÊÇcoskx¡Ê[-1£¬1]£¬
ÓÖ¡ßcos£¨kx+kT£©¡Ê[-1£¬1]£¬
¹ÊҪʹcosk£¨x+T£©=Tcoskxºã³ÉÁ¢£¬Ö»ÓÐT=¡À1£¬
µ±T=1ʱ£¬cos£¨kx-k£©=coskx µÃµ½ k=2n¦Ð£¬n¡ÊÇÒn¡Ù0£»
µ±T=-1ʱ£¬cos£¨kx-k£©=-coskx µÃµ½-k=2n¦Ð+¦Ð£¬
¼´k=£¨2n+1£©¦Ð£¬n¡ÊZ£»
×ÛÉÏ¿ÉÖª£ºµ±T=1ʱ£¬k=2n¦Ð£¬n¡ÊZ£»
µ±T=-1ʱ£¬K=£¨2n+1£©¦Ð£¬n¡ÊZ£®
¼´-£¨x+1£©2+a£¨x+1£©£¾2£¨-2+ax£©¶ÔÒ»ÇÐ[3£¬+¡Þ£©ºã³ÉÁ¢£¬
£¨x-1£©a£¼x2-2x-1£¬
¡ßx¡Ê[3£¬+¡Þ£©
¡àa£¼
| x2-2x-1 |
| x-1 |
| (x-1)2-2 |
| x-1 |
| 2 |
| x-1 |
Áîx-1=t£¬Ôòt¡Ê[2£¬+¡Þ£©£¬
g£¨x£©=t-
| 2 |
| t |
¡àg£¨t£©min=g£¨2£©=1£¬
¡àa£¼1£®
£¨2£©¡ßx¡Ê[0£¬1£©Ê±£¬f£¨x£©=2x£¬
¡àµ±x¡Ê[1£¬2£©Ê±£¬f£¨x£©=mf£¨x-1£©=m•2x-1£¬
µ±x¡Ê[n£¬n+1]ʱ£¬f£¨x£©=mf£¨x-1£©=m2f£¨x-2£©=¡=mnf£¨x-n£©=mn•2x-n£¬
¼´x¡Ê[n£¬n+1£©Ê±£¬f£¨x£©=mn•2x-n£¬n¡ÊN*£¬
¡ßf£¨x£©ÔÚ[0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
¡àm£¾0ÇÒmn•2n-n£¾mn-1•2n-£¨n-1£©£¬¼´m¡Ý2£®
£¨3£©ÎÊÌ⣨¢ñ£©¡ßµ±x¡Ê[0£¬4]ʱ£¬y¡Ê[-4£¬0]£¬ÇÒÓÐf£¨x+4£©=mf£¨x£©£¬
¡àµ±x¡Ê[4n£¬4n+4]£¬n¡ÊZʱ£¬
f£¨x£©=mf£¨x-4£©=¡=mnf£¨x-4n£©=mn[£¨x-4n£©2-4£¨x-4n£©]£¬
µ±0£¼m¡Ü1ʱ£¬f£¨x£©¡Ê[-4£¬0]£»
µ±-1£¼m£¼0ʱ£¬f£¨x£©¡Ê[-4£¬-4m]£»
µ±m=-1ʱ£¬f£¨x£©¡Ê[-4£¬4]£»
µ±m£¾1ʱ£¬f£¨x£©¡Ê£¨-¡Þ£¬0£©£»
µ±m£¼-1ʱ£¬f£¨x£©¡Ê£¨-¡Þ£¬+¡Þ£©£»
×ÛÉÏ¿ÉÖª£º-1¡Üm£¼0»ò0£¼m¡Ü1£®
ÎÊÌ⣨¢ò£©£ºÓÉÒÑÖª£¬ÓÐf£¨x+T£©=T•f£¨x£©¶ÔÒ»ÇÐʵÊýxºã³ÉÁ¢£¬
¼´cosk£¨x+T£©=Tcoskx¶ÔÒ»ÇÐʵÊýºã³ÉÁ¢£¬
µ±k=0ʱ£¬T=1£»
µ±k¡Ù0ʱ£¬¡ßx¡ÊR£¬¡àkx¡ÊR£¬kx+kT¡ÊR£¬ÓÚÊÇcoskx¡Ê[-1£¬1]£¬
ÓÖ¡ßcos£¨kx+kT£©¡Ê[-1£¬1]£¬
¹ÊҪʹcosk£¨x+T£©=Tcoskxºã³ÉÁ¢£¬Ö»ÓÐT=¡À1£¬
µ±T=1ʱ£¬cos£¨kx-k£©=coskx µÃµ½ k=2n¦Ð£¬n¡ÊÇÒn¡Ù0£»
µ±T=-1ʱ£¬cos£¨kx-k£©=-coskx µÃµ½-k=2n¦Ð+¦Ð£¬
¼´k=£¨2n+1£©¦Ð£¬n¡ÊZ£»
×ÛÉÏ¿ÉÖª£ºµ±T=1ʱ£¬k=2n¦Ð£¬n¡ÊZ£»
µ±T=-1ʱ£¬K=£¨2n+1£©¦Ð£¬n¡ÊZ£®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁ˺¯ÊýµÄÐÔÖÊ£¬ÍÆÀí±äÐÎÄÜÁ¦£¬·ÖÀàÌÖÂÛµÄ˼Ï룬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÏÂÁи÷×麯Êý±íʾÏàµÈº¯ÊýµÄÊÇ £¨¡¡¡¡£©
A¡¢f£¨x£©=x+2Óëg£¨x£©=
| |||||
| B¡¢f£¨x£©=£¨x-1£©2Óë g£¨x£©=x-1 | |||||
C¡¢f£¨x£©=|x|Óë g£¨x£©=
| |||||
D¡¢f£¨x£©=
|
ÒÑÖªº¯Êýf£¨x£©=sin£¨
x+¦È£©-
cos£¨
x+¦È£©£¨|¦È|£¼
£©µÄͼÏó¹ØÓÚyÖá¶Ô³Æ£¬Ôòy=f£¨x£©ÔÚÏÂÁÐÄĸöÇø¼äÉÏÊǼõº¯Êý£¨¡¡¡¡£©
| 1 |
| 2 |
| 3 |
| 1 |
| 2 |
| ¦Ð |
| 2 |
A¡¢£¨0£¬
| ||||
B¡¢£¨-
| ||||
C¡¢£¨
| ||||
D¡¢£¨
|
Ôڱ߳¤Îª4µÄÕý·½ÐÎABCDÖУ¬ACÓëBDÏཻÓÚO£®¼õÈ¥¡÷AOB£¬½«Ê£Ï²¿·ÖÑØOC¡¢ODÕÛµþ£¬Ê¹OA¡¢OBÖØºÏ£¬ÔòÒÔA£¨B£©£¬C£¬D£¬OΪ¶¥µãµÄËÄÃæÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A¡¢
| ||||
B¡¢
| ||||
C¡¢
| ||||
D¡¢2
|
| A¡¢y=2t |
| B¡¢y=2t2 |
| C¡¢y=log2t |
| D¡¢y=t3 |
Ö±Ïßx+y-2=0ÓëÔ²£¨x-1£©2+£¨y-2£©2=1ÏཻÓÚA£¬BÁ½µã£¬ÔòÏÒ|AB|=£¨¡¡¡¡£©
A¡¢
| ||||
B¡¢
| ||||
C¡¢
| ||||
D¡¢
|