题目内容

已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}是各项均为正数的等比数列,b1=1,b5=16.
(1)求数列{an}和{bn}的通项公式;
(2)设cn=
an
bn
,求证:数列{cn}的前n项和Tn≥1.
考点:数列的求和,等比数列的通项公式
专题:等差数列与等比数列
分析:(1)n≥2时,an=Sn-Sn-1=2n-1,n=1时,a1=S1=1,满足上式,由此求出an=2n-1(n∈N*).由b5=b1q4=q4=16,bn>0,求出bn=2n-1(n∈N*).
(2)由cn=
an
bn
=
2n-1
2n-1
,利用错位相减法求出Tn=6-
2n+3
2n+1
,n∈N*.由此能证明Tn≥1.
解答: (1)解:n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
n=1时,a1=S1=1,满足上式,
∴an=2n-1(n∈N*).
∵b5=b1q4=q4=16,bn>0,∴q=2,
∵b1=1,∴bn=2×2n-1=2n-1(n∈N*).
(2)证明:∵cn=
an
bn
=
2n-1
2n-1

∴Tn=
1
20
+
3
2
+
5
22
+…+
2n-1
2n-1
.①
1
2
Tn=
1
2
+
3
22
+
5
23
+
7
24
+…+
2n-1
2n
,②
①-②,得:
1
2
Tn=2+2•(
1
22
+
1
23
+…+
1
2n-1
)-
2n-1
2n

=2+2×
1
22
(1-
1
2n-1
)
1-
1
2
-
2n-1
2n

=3-
2n+3
2n

Tn=6-
2n+3
2n+1
,n∈N*
Tn+1-Tn=[6-
2(n+1)+3
2n
]-(6-
2n+3
2n-1
)

=-
2(n+1)+3
2n
+
2n+3
2n-1

=
-(2n+5)+4n+6
2n

=
2n+1
2n
>0

又T1=1,∴Tn≥1.
点评:本题考查数列的通项公式的求法,考查数列的前n项和大于等于1的证明,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网