题目内容

某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮;现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(1)求f(5)的值;
(2)利用合情推理归纳出f(n+1)与f(n)的关系,并求f(n)的表达式;
(3)求证:
1
f(1)
+
1
f(2)+3
+
1
f(3)+5
+…+
1
f(n)+2n-1
3n-1
2n
考点:进行简单的合情推理,反证法与放缩法
专题:规律型,等差数列与等比数列
分析:(1)先分别观察给出正方体的个数为:1,1+4,1+4+8,…从而得出f(5);
(2)将(1)总结一般性的规律:f(n+1)与f(n)的关系式,再从总结出来的一般性的规律转化为特殊的数列再求解即得.
(3)由
1
f(n)+2n-1
=
1
2n2
利用放缩法可证得:
1
f(1)
+
1
f(2)+3
+
1
f(3)+5
+…+
1
f(n)+2n-1
3n-1
2n
解答: 解:(Ⅰ)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,
∴f(2)-f(1)=4=4×1.
f(3)-f(2)=8=4×2,
f(4)-f(3)=12=4×3,
f(5)-f(4)=16=4×4
∴f(5)=25+4×4=41.…(4分)
(Ⅱ)由上式规律得出f(n+1)-f(n)=4n.…(8分)
∴f(2)-f(1)=4×1,
f(3)-f(2)=4×2,
f(4)-f(3)=4×3,

f(n-1)-f(n-2)=4•(n-2),
f(n)-f(n-1)=4•(n-1)…(10分)
∴f(n)-f(1)=4[1+2+…+(n-2)+(n-1)]=2(n-1)•n,
∴f(n)=2n2-2n+1.…(12分)
(3)∵f(n)+2n-1=2n2
1
f(n)+2n-1
=
1
2n2
 
1
f(1)
+
1
f(2)+3
+
1
f(3)+5
+…+
1
f(n)+2n-1

=1+
1
2
1
2×2
+
1
3×3
+…+
1
n×n

<1+
1
2
[
1
1×2
+
1
2×3
+…+
1
(n-1)×n
]
=1+
1
2
(1-
1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n

=1+
1
2
(1-
1
n

=
3n-1
2n
点评:本题主要考查归纳推理,其基本思路是先分析具体,观察,总结其内在联系,得到一般性的结论,若求解的项数较少,可一直推理出结果,若项数较多,则要得到一般求解方法,再求具体问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网