题目内容

已知数列{an}满足an+1=
(n+2)
a
2
n
-nan+n+1
a
2
n
+1
(n∈N*),Sn是数列{an}的前n项和.
(1)若a1=1,求a2,a3,a4并推证数列{an}的通项公式;
(2)若a1∈[
1
2
3
2
],求证:|Sn-
n(n+1)
2
|<1(n∈N*).
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由于an+1=
(n+2)
a
2
n
-nan+n+1
a
2
n
+1
(n∈N*),a1=1,可得a2=2,a3=3,a4=4.猜想an=n.用数学归纳法证明即可.
(2)由于an+1-(n+1)=
(n+2)
a
2
n
-nan+n+1
a
2
n
+1
-(n+1)=
an
a
2
n
+1
(an-n),|an+1-(n+1)|=|
an
a
2
n
+1
||an-n|
.当an≠0时,当an=0时,|
an
a
2
n
+1
|
1
2
.可得|an+1-(n+1)|≤
1
2
|an-n|
,而|a1-1|≤
1
2
.|an-n|
1
2
|an-1-(n-1)|
≤…≤(
1
2
)n-1|a1-1|
≤(
1
2
)n
.利用|Sn-
n(n+1)
2
|=|(a1-1)+(a2-2)+…+(an-n)|≤|a1-1|+|a2-2|++…+|an-n|,即可证明.
解答: (1)解:∵an+1=
(n+2)
a
2
n
-nan+n+1
a
2
n
+1
(n∈N*),a1=1,
∴a2=2,a3=3,a4=4.
猜想an=n.
下面用数学归纳法证明.
当n=1时,成立;
假设当n=k(k∈N*)时,ak=k.
则当n=k+1时,ak+1=
(k+2)k2-k2+k+1
k2+1
=k+1.
∴当n=k+1时,也成立.
∴an=n.
(2)证明:∵an+1-(n+1)=
(n+2)
a
2
n
-nan+n+1
a
2
n
+1
-(n+1)=
an
a
2
n
+1
(an-n),
∴|an+1-(n+1)|=|
an
a
2
n
+1
||an-n|

(i)当an≠0时,|
an
a
2
n
+1
|
=|
1
an+
1
an
|
1
2
,(ii)当an=0时,|
an
a
2
n
+1
|
=0
1
2

|an+1-(n+1)|≤
1
2
|an-n|
,而|a1-1|≤
1
2

∴|an-n|
1
2
|an-1-(n-1)|
≤…≤(
1
2
)n-1|a1-1|
≤(
1
2
)n

∴|Sn-
n(n+1)
2
|=|(a1-1)+(a2-2)+…+(an-n)|≤|a1-1|+|a2-2|++…+|an-n|
1
2
+(
1
2
)2
+…+(
1
2
)n
=
1
2
[1-(
1
2
)n]
1-
1
2
=1-
1
2n
<1.
∴|Sn-
n(n+1)
2
|<1(n∈N*).
点评:本题考查了数学归纳法、猜想能力、不等式的性质、基本不等式的性质、含绝对值不等式的性质,考查了放缩法,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网