ÌâÄ¿ÄÚÈÝ
ÔÚÕýÊýÊýÁÐ{an}£¨n¡ÊN*£©ÖУ¬SnΪ{an}µÄǰnÏîºÍ£¬Èôµã£¨an£¬Sn£©ÔÚº¯Êýy=
µÄͼÏóÉÏ£¬ÆäÖÐcΪÕý³£Êý£¬ÇÒc¡Ù1£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÊÇ·ñ´æÔÚÕýÕûÊýM£¬Ê¹µÃµ±n£¾Mʱ£¬a1•a3•a5¡a2n-1£¾a101ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öʹ½áÂÛ³ÉÁ¢µÄcµÄȡֵ·¶Î§ºÍÏàÓ¦µÄMµÄ×îСֵ£®
£¨¢ó£©Èô´æÔÚÒ»¸öµÈ²îÊýÁÐ{bn}£¬¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐb1an+b2an-1+b3an-2+¡+bn-1a2+bna1=3n-
n-1³ÉÁ¢£¬Çó{bn}µÄͨÏʽ¼°cµÄÖµ£®
| c2-x |
| c-1 |
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÊÇ·ñ´æÔÚÕýÕûÊýM£¬Ê¹µÃµ±n£¾Mʱ£¬a1•a3•a5¡a2n-1£¾a101ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öʹ½áÂÛ³ÉÁ¢µÄcµÄȡֵ·¶Î§ºÍÏàÓ¦µÄMµÄ×îСֵ£®
£¨¢ó£©Èô´æÔÚÒ»¸öµÈ²îÊýÁÐ{bn}£¬¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐb1an+b2an-1+b3an-2+¡+bn-1a2+bna1=3n-
| 5 |
| 3 |
¿¼µã£ºÊýÁÐÓë²»µÈʽµÄ×ÛºÏ,ÊýÁеĺ¯ÊýÌØÐÔ
רÌ⣺¼ÆËãÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨¢ñ£©Óɵ㣨an£¬Sn£©ÔÚº¯ÊýͼÏóÉÏ£¬´úÈ뺯Êý±í´ïʽ¿ÉµÃµ½anÓëSnµÄ¹ØÏµÊ½£¬Ïûsn¿ÉÇóan£®
£¨¢ò£©¿¼²éÁ˺ã³ÉÁ¢Ìõ¼þµÄת»¯¼°Ö¸ÊýÔËËã·¨Ôò£»Í¬Ê±Ò²¿¼²éÁË·ÖÀàÌÖÂÛµÄ˼Ï룮
£¨¢ó£©¿¼²éÁË´íλÏà¼õ·¨µÄ±äÐÎÓ¦Óü°ºã³ÉÁ¢ÎÊÌâµÄ³£¹æ½â¾ö·½·¨£®
£¨¢ò£©¿¼²éÁ˺ã³ÉÁ¢Ìõ¼þµÄת»¯¼°Ö¸ÊýÔËËã·¨Ôò£»Í¬Ê±Ò²¿¼²éÁË·ÖÀàÌÖÂÛµÄ˼Ï룮
£¨¢ó£©¿¼²éÁË´íλÏà¼õ·¨µÄ±äÐÎÓ¦Óü°ºã³ÉÁ¢ÎÊÌâµÄ³£¹æ½â¾ö·½·¨£®
½â´ð£º
½â£º£¨¢ñ£©sn=
£¬n¡Ý2ʱ£¬sn-sn-1=
-
an=
£¬(c-1)an=an-1-an£¬can=an-1£¬
=
¡à{an}ÊǵȱÈÊýÁУ®
½«£¨a1£¬S1£©´úÈëy=
µÃa1=c£¬
¹Êan=(
)n-2£®
£¨¢ò£©ÓÉa1•a3•a5¡a2n-1£¾a101µÃ£¬c•c-1¡(
)2n-3£¾(
)99£¬
¡à(
)n(n-2)£¾(
)99£®
Èô
£¾1£¬¼´0£¼c£¼1ʱ£¬n(n-2)£¾99£¬
½âµÃ£ºn£¾11»òn£¼-9£¨ÉáÈ¥£©£®
Èô
£¼1£¬¼´c£¾1ʱ£¬n(n-2)£¼99£¬
½âµÃ£º-9£¼n£¼11£¬
²»·ûºÏn£¾Mʱ£¬a1•a3•a5¡a2n-1£¾a101ºã³ÉÁ¢£¬¹ÊÉáÈ¥£®
cµÄȡֵ·¶Î§ÊÇ£¨0£¬1£©£¬ÏàÓ¦µÄMµÄ×îСֵΪ11£®
£¨¢ó£©ÓÉ£¨¢ñ£©Öª£¬an=c2-n£¬ÓÉ{bn}ΪµÈ²îÊýÁУ¬Éèbn=b1+£¨n-1£©d£®
b1an+b2an-1+¡+bn-1a2+bna1=3n-
n-1£¨n¡ÊN*£©£¬£¨1£©
µ±n=1ʱ£¬b1c=
£®£¨2£©
µ±n¡Ý2ʱ£¬b1an-1+b2an-2+¡+bn-2a2+bn-1a1=3n-1-
(n-1)-2£¬£¨3£©
£¨1£©-£¨3£©µÃb1an+d£¨an-1+an-2+¡+a1£©=3n-3n-1-
£¬
¼´£¨b1c-
£©c1-n+
=2¡Á3n-1-
£¬£¨4£©
¡ß£¨4£©Ê½¶ÔÒ»ÇÐn£¨n¡Ý2£©ºã³ÉÁ¢£¬Ôò±ØÓÐ
½â£¨2£©£¨5£©µÃ
¹Êbbn=10n-9£¬c=
£®
| c2-an |
| c-1 |
| c2-an |
| c-1 |
| c2-an-1 |
| c-1 |
an=
| an-1-an |
| c-1 |
| an |
| an-1 |
| 1 |
| c |
¡à{an}ÊǵȱÈÊýÁУ®
½«£¨a1£¬S1£©´úÈëy=
| c2-x |
| c-1 |
¹Êan=(
| 1 |
| c |
£¨¢ò£©ÓÉa1•a3•a5¡a2n-1£¾a101µÃ£¬c•c-1¡(
| 1 |
| c |
| 1 |
| c |
¡à(
| 1 |
| c |
| 1 |
| c |
Èô
| 1 |
| c |
½âµÃ£ºn£¾11»òn£¼-9£¨ÉáÈ¥£©£®
Èô
| 1 |
| c |
½âµÃ£º-9£¼n£¼11£¬
²»·ûºÏn£¾Mʱ£¬a1•a3•a5¡a2n-1£¾a101ºã³ÉÁ¢£¬¹ÊÉáÈ¥£®
cµÄȡֵ·¶Î§ÊÇ£¨0£¬1£©£¬ÏàÓ¦µÄMµÄ×îСֵΪ11£®
£¨¢ó£©ÓÉ£¨¢ñ£©Öª£¬an=c2-n£¬ÓÉ{bn}ΪµÈ²îÊýÁУ¬Éèbn=b1+£¨n-1£©d£®
b1an+b2an-1+¡+bn-1a2+bna1=3n-
| 5 |
| 3 |
µ±n=1ʱ£¬b1c=
| 1 |
| 3 |
µ±n¡Ý2ʱ£¬b1an-1+b2an-2+¡+bn-2a2+bn-1a1=3n-1-
| 5 |
| 3 |
£¨1£©-£¨3£©µÃb1an+d£¨an-1+an-2+¡+a1£©=3n-3n-1-
| 5 |
| 3 |
¼´£¨b1c-
| c2d |
| c-1 |
| c2d |
| c-1 |
| 5 |
| 3 |
¡ß£¨4£©Ê½¶ÔÒ»ÇÐn£¨n¡Ý2£©ºã³ÉÁ¢£¬Ôò±ØÓÐ
|
½â£¨2£©£¨5£©µÃ
|
| 1 |
| 3 |
µãÆÀ£º±¾ÌâÒÔÊýÁÐÎªÔØÌ壬²»½ö¿¼²éÁËÊýÁеÄÇóºÍ·½·¨ÓëÇóͨÏʽµÄ·½·¨£¬¶øÇÒ¿¼²éÁ˺ã³ÉÁ¢ÎÊÌâµÄ´¦Àí·½·¨£»×ÛºÏÐԱȽÏÇ¿£®»¯¼òºÜ·±Ëö£¬Ñ§Éú¿Éͨ¹ý¶àÁ·Ï°ÕÆÎÕ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿