题目内容

19.对a>0,b>0,a+b≥2$\sqrt{ab}$.若x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$,则x+$\frac{1}{x}$≥2,以上推理过程中的错误为(  )
A.大前提B.小前提C.结论D.无错误

分析 演绎推理是由一般到特殊的推理,是一种必然性的推理,演绎推理得到的结论不一定是正确的,这要取决与前提是否真实和推理的形式是否正确,演绎推理一般模式是“三段论”形式,即大前提小前提和结论.

解答 解:∵a>0,b>0,a+b≥2$\sqrt{ab}$,
这是基本不等式的形式,注意到基本不等式的使用条件,a,b都是正数,
x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$是小前提,没有写出x的取值范围,
∴本题中的小前提有错误,
故选B.

点评 本题考查演绎推理的意义,演绎推理是由一般性的结论推出特殊性命题的一种推理模式,演绎推理的前提与结论之间有一种蕴含关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网