题目内容
| 2 |
(Ⅰ)求证:PA∥平面BDE;
(Ⅱ)求证:AC⊥平面PBD;
(Ⅲ)求直线BC与平面PBD所成的角的正弦值.
考点:直线与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(I)设AC∩BD=H,连结EH,由三角形中位线定理得EH∥PA.由此能证明PA∥平面BDE.
(II)由线面垂直得PD⊥AC,由(I)得,DB⊥AC,由此能证明AC⊥平面PBD.
(Ⅲ)由AC⊥平面PBD知,∠CBH为直线BC与平面PBD所成的角.由此能求出直线BC与平面PBD所成的角的正弦值.
(II)由线面垂直得PD⊥AC,由(I)得,DB⊥AC,由此能证明AC⊥平面PBD.
(Ⅲ)由AC⊥平面PBD知,∠CBH为直线BC与平面PBD所成的角.由此能求出直线BC与平面PBD所成的角的正弦值.
解答:
(I)证明:设AC∩BD=H,连结EH.
在△ADC中,因为AD=CD,且DB平分∠ADC,
所以H为AC的中点.又由题设,E为PC的中点,
故EH∥PA.又EH?平面BDE,PA不包含于平面BDE,
所以PA∥平面BDE.
(II)证明:因为PD⊥平面ABCD,
AC?平面ABCD,所以PD⊥AC.
由(I)得,DB⊥AC.
又PD∩DB=D,故AC⊥平面PBD.
(Ⅲ)解:由AC⊥平面PBD知,
BH为BC在平面PBD内的射影,
所以∠CBH为直线BC与平面PBD所成的角.
由AD⊥CD,AD=CD=1,DB=2
,
得DH=CH=
,BH=
,BC=
,
在Rt△BHC中,sin∠CBH=
=
=
,
所以直线BC与平面PBD所成的角的正弦值为
.
在△ADC中,因为AD=CD,且DB平分∠ADC,
所以H为AC的中点.又由题设,E为PC的中点,
故EH∥PA.又EH?平面BDE,PA不包含于平面BDE,
所以PA∥平面BDE.
(II)证明:因为PD⊥平面ABCD,
AC?平面ABCD,所以PD⊥AC.
由(I)得,DB⊥AC.
又PD∩DB=D,故AC⊥平面PBD.
(Ⅲ)解:由AC⊥平面PBD知,
BH为BC在平面PBD内的射影,
所以∠CBH为直线BC与平面PBD所成的角.
由AD⊥CD,AD=CD=1,DB=2
| 2 |
得DH=CH=
| ||
| 2 |
3
| ||
| 2 |
| 5 |
在Rt△BHC中,sin∠CBH=
| CH |
| BC |
| ||||
|
3
| ||
| 10 |
所以直线BC与平面PBD所成的角的正弦值为
3
| ||
| 10 |
点评:本题考查直线与平面平行的证明,考查直线与平面垂直的证明,考查直线与平面所成角的正弦值的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目