ÌâÄ¿ÄÚÈÝ
5£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµãP£¨2£¬1£©£¬ÇÒÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£®£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÉèOÎª×ø±êԵ㣬ÔÚÍÖÔ²¶ÌÖáÉÏÓÐÁ½µãM£¬NÂú×ã$\overrightarrow{OM}$=$\overrightarrow{NO}$£¬Ö±ÏßPM¡¢PN·Ö±ð½»ÍÖÔ²ÓÚA£¬B£®
£¨i£©ÇóÖ¤£ºÖ±ÏßAB¹ý¶¨µã£¬²¢Çó³ö¶¨µãµÄ×ø±ê£»
£¨ii£©Çó¡÷OABÃæ»ýµÄ×î´óÖµ£®
·ÖÎö £¨¢ñ£©ÓÉÀëÐÄÂʹ«Ê½£¬½«P´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨¢ò£©£¨i£©ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+t£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃÖ±Ïߵĵãбʽ·½³Ì£¬ÇóµÃMºÍNµã×ø±ê£¬ÓÉ$\overrightarrow{OM}$=$\overrightarrow{NO}$£¬ÀûÓÃΤ´ï¶¨Àí£¬»¯¼òµ±t=-2ʱ£¬¶ÔÈÎÒâµÄk¶¼³ÉÁ¢£¬Ö±ÏßAB¹ý¶¨µãQ£¨0£¬-2£©£»
£¨ii£©S¡÷OAB=ØS¡÷OQA-S¡÷OQBØ=Øx1-x2Ø£¬ÓÉΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊ£¬¼´¿ÉÇóµÃ¡÷OABÃæ»ýµÄ×î´óÖµ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{3}}{2}$£¬Ôòa2=4b2£¬
½«P£¨2£¬1£©´úÈëÍÖÔ²$\frac{{x}^{2}}{4{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¬Ôò$\frac{1}{{b}^{2}}+\frac{1}{{b}^{2}}=1$£¬½âµÃ£ºb2=2£¬Ôòa2=8£¬
¡àÍÖÔ²µÄ·½³ÌΪ£º$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$£»
£¨¢ò£©£¨i£©µ±M£¬N·Ö±ðÊǶÌÖáµÄ¶Ëµãʱ£¬ÏÔȻֱÏßABΪyÖᣬËùÒÔÈôÖ±Ïß¹ý¶¨µã£¬Õâ¸ö¶¨µãÒ»µãÔÚyÖáÉÏ£¬
µ±M£¬N²»ÊǶÌÖáµÄ¶Ëµãʱ£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+t£¬ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1}\\{y=kx+t}\end{array}\right.$£¬£¨1+4k2£©x2+8ktx+4t2-8=0£¬
Ôò¡÷=16£¨8k2-t2+2£©£¾0£¬
x1+x2=-$\frac{8kt}{4{k}^{2}+1}$£¬x1x2=$\frac{4{t}^{2}-8}{4{k}^{2}+1}$£¬
ÓÖÖ±ÏßPAµÄ·½³ÌΪy-1=$\frac{{y}_{1}-1}{{x}_{1}-2}$£¨x-2£©£¬
¼´y-1=$\frac{k{x}_{1}+t-1}{{x}_{1}-2}$£¨x-2£©£¬
Òò´ËMµã×ø±êΪ£¨0£¬$\frac{£¨1-2k£©{x}_{1}-2t}{{x}_{1}-2}$£©£¬Í¬Àí¿ÉÖª£ºN£¨0£¬$\frac{£¨1-2k£©{x}_{2}-2t}{{x}_{2}-2}$£©£¬
ÓÉ$\overrightarrow{OM}$=$\overrightarrow{NO}$£¬Ôò$\frac{£¨1-2k£©{x}_{1}-2t}{{x}_{1}-2}$+$\frac{£¨1-2k£©{x}_{2}-2t}{{x}_{2}-2}$=0£¬
»¯¼òÕûÀíµÃ£º£¨2-4k£©x1x2-£¨2-4k+2t£©£¨x1+x2£©+8t=0£¬
Ôò£¨2-4k£©¡Á$\frac{4{t}^{2}-8}{4{k}^{2}+1}$-£¨2-4k+2t£©£¨-$\frac{8kt}{4{k}^{2}+1}$£©+8t=0£¬
»¯¼òÕûÀíµÃ£º£¨2t+4£©k+£¨t2+t-2£©=0£¬
µ±ÇÒ½öµ±t=-2ʱ£¬¶ÔÈÎÒâµÄk¶¼³ÉÁ¢£¬Ö±ÏßAB¹ý¶¨µãQ£¨0£¬-2£©£»
£¨ii£©ÓÉ£¨i£©¿ÉÖª£ºS¡÷OAB=ØS¡÷OQA-S¡÷OQBØ=Ø$\frac{1}{2}$ØOQØ•Øx1Ø-$\frac{1}{2}$ØOQØ•Øx2ØØ£¬
=$\frac{1}{2}$¡Á2¡ÁØx1-x2Ø=Øx1-x2Ø=$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$£¬
$\sqrt{£¨\frac{16k}{4{k}^{2}+1}£©^{2}-4¡Á\frac{8}{4{k}^{2}+1}}$=4$\sqrt{\frac{8{k}^{2}-2}{£¨4{k}^{2}+1£©^{2}}}$£¬
Áî4k2+1=u£¬ÔòS¡÷OAB=4$\sqrt{\frac{2u-4}{{u}^{2}}}$£¬
=4$\sqrt{-£¨\frac{2}{u}-\frac{1}{2}£©^{2}+\frac{1}{4}}$¡Ü2£¬
¼´µ±$\frac{2}{u}$=$\frac{1}{2}$£¬u=4£¬¼´k=¡À$\frac{\sqrt{3}}{2}$ʱ£¬µÈºÅ³ÉÁ¢£¬
¡à¡÷OABÃæ»ýµÄ×î´óÖµ2£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½£¬¿¼²éÍÖÔ²Ó뺯Êý×îÖµµÃ×ÛºÏÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | a£¾b£¾c | B£® | b£¾a£¾c | C£® | b£¾c£¾a | D£® | a£¾c£¾b |
| A£® | ¦Ø=¦Ð | |
| B£® | ¦Õ=$\frac{¦Ð}{4}$ | |
| C£® | f£¨x£©µÄµ¥µ÷¼õÇø¼äΪ£¨2k-$\frac{1}{4}$£¬2k+$\frac{3}{4}$£©£¬k¡ÊZ | |
| D£® | f£¨x£©µÄ¶Ô³ÆÖÐÐÄÊÇ£¨k+$\frac{1}{4}$£¬0£©£¬k¡ÊZ |
£¨¢ñ£©Èô½«Ò»°ãµÈ¼¶ºÍÁ¼ºÃµÈ¼¶ºÏ³ÆÎªºÏ¸ñµÈ¼¶£¬¸ù¾ÝÒÑÖªÌõ¼þÍê³ÉÏÂÃæµÄ2¡Á2ÁÐÁª±í£¬²¢¾Ý´Ë×ÊÁÏÄãÊÇ·ñÓÐ95%µÄ°ÑÎÕÈÏΪѡÊֳɼ¨¡°ÓÅÐ㡱ÓëÎÄ»¯³Ì¶ÈÓйأ¿
| ÓÅÐã | ºÏ¸ñ | ºÏ¼Æ | |
| ´óѧ×é | |||
| ÖÐѧ×é | |||
| ºÏ¼Æ |
| P£¨k2¡Ýk0£© | 0.10 | 0.05 | 0.005 |
| k0 | 2.706 | 3.841 | 7.879 |
£¨¢ó£©ÔÚÓÅÐãµÈ¼¶µÄÑ¡ÊÖÖÐÈ¡6Ãû£¬ÒÀ´Î±àºÅΪ1£¬2£¬3£¬4£¬5£¬6£¬ÔÚÁ¼ºÃµÈ¼¶µÄÑ¡ÊÖÖÐÈ¡6Ãû£¬ÒÀ´Î±àºÅΪ1£¬2£¬3£¬4£¬5£¬6£¬ÔÚÑ¡³öµÄ6ÃûÓÅÐãµÈ¼¶µÄÑ¡ÊÖÖÐÈÎȡһÃû£¬¼ÇÆä±àºÅΪa£¬ÔÚÑ¡³öµÄ6ÃûÁ¼ºÃµÈ¼¶µÄÑ¡ÊÖÖÐÈÎȡһÃû£¬¼ÇÆä±àºÅΪb£¬ÇóʹµÃ·½³Ì×é$\left\{\begin{array}{l}ax+by=3\\ x+2y=2\end{array}\right.$ÓÐΨһһ×éʵÊý½â£¨x£¬y£©µÄ¸ÅÂÊ£®
| A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{3}$ | C£® | $\frac{2¦Ð}{3}$ | D£® | $\frac{5¦Ð}{6}$ |