题目内容

已知点P是抛物线y2=6x上的一个动点,则点P到点M(0,2)的距离与点P到该抛物线的准线的距离之和的最小值为(  )
A、2
B、3
C、
5
2
D、
3
2
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:先求出抛物线的焦点坐标,再由抛物线的定义可得d=|PF|+|PM|≥|MF|,再求出|MF|的值即可.
解答: 解:依题设P在抛物线准线的投影为P′,抛物线的焦点为F,则F(
3
2
,0),
依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,
则点P到点M(0,2)的距离与P到该抛物线准线的距离之和d=|PF|+|PM|≥|MF|=
9
4
+4
=
5
2

故选C.
点评:本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网