题目内容
设
,
是两个非零的平面向量,下列说法正确的是( )
①若
•
=0,则有|
+
|=|
-
|;
②|
•
|=|
||
|;
③若存在实数λ,使得
=λ
,则|
+
|=|
|+|
|;
④若|
+
|=|
|-|
|,则存在实数λ,使得
=λ
.
| a |
| b |
①若
| a |
| b |
| a |
| b |
| a |
| b |
②|
| a |
| b |
| a |
| b |
③若存在实数λ,使得
| a |
| b |
| a |
| b |
| a |
| b |
④若|
| a |
| b |
| a |
| b |
| a |
| b |
| A、①③ | B、①④ | C、②③ | D、②④ |
考点:平面向量数量积的性质及其运算律
专题:平面向量及应用
分析:①当
•
=0时,判断|
+
|=|
-
|成立;
②利用数量积判断|
•
|=|
||
|不一定成立;
③当
=λ
时,判断|
+
|=|
|+|
|不一定成立;
④当|
+
|=|
|-|
|时,得出
、
共线,即可判断正误.
| a |
| b |
| a |
| b |
| a |
| b |
②利用数量积判断|
| a |
| b |
| a |
| b |
③当
| a |
| b |
| a |
| b |
| a |
| b |
④当|
| a |
| b |
| a |
| b |
| a |
| b |
解答:
解:对于①,当
•
=0时,|
+
|=
=
=|
-
|,∴①正确;
对于②,∵
•
=|
||
|cos<
,
>,∴|
•
|=|
||
|不一定成立,②错误;
对于③,当
=λ
时,则|
+
|=|λ
+
|=|
||λ+1|,|
|+|
|=|λ
|+|
|=|
|(|λ|+1),
|
+
|=|
|+|
|不一定成立,∴③错误;
对于④,当|
+
|=|
|-|
|时,∴
2+2
•
+
2=|
|2-2|
||
|+|
|2,
∴
•
=-|
||
|,∴
共线,即存在实数λ,使得
=λ
,∴④正确.
综上,正确的是①④.
故选:B.
| a |
| b |
| a |
| b |
|
|
| a |
| b |
对于②,∵
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
对于③,当
| a |
| b |
| a |
| b |
| b |
| b |
| b |
| a |
| b |
| b |
| b |
| b |
|
| a |
| b |
| a |
| b |
对于④,当|
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
| a |
| a |
| b |
| b |
∴
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
综上,正确的是①④.
故选:B.
点评:本题考查了平面向量的应用问题,解题时应熟练地掌握平面向量的有关概念,是基础题.
练习册系列答案
相关题目