题目内容
15.△ABC的三个内角A、B、C,所对的边分别是a、b、c,若c=2$\sqrt{3}$,tanA+tanB=$\sqrt{3}$-$\sqrt{3}$tanAtanB,则△ABC的面积的取值范围是( )| A. | [$\sqrt{3}$,+∞) | B. | (0,$\sqrt{3}$] | C. | ($\frac{1}{2}$,$\sqrt{3}$] | D. | (0,$\frac{\sqrt{3}}{2}$] |
分析 由已知条件求得C,再由余弦定理可得ab的范围,代入三角形面积公式得答案.
解答 解:由tanA+tanB=$\sqrt{3}$-$\sqrt{3}$tanAtanB,得tanA+tanB=$\sqrt{3}$(1-tanAtanB),
∴tan(A+B)=$\sqrt{3}$,即tanC=-$\sqrt{3}$.
∵0<C<π,∴C=$\frac{2π}{3}$.
则sinC=$\frac{\sqrt{3}}{2}$.
又c=2$\sqrt{3}$,由余弦定理可得:$(2\sqrt{3})^{2}={a}^{2}+{b}^{2}-2ab•cos\frac{2π}{3}$,
即a2+b2+ab=12,
∴12=a2+b2+ab≥3ab,得ab≤4.
则${S}_{△ABC}=\frac{1}{2}ab•sinC≤\frac{1}{2}×4×\frac{\sqrt{3}}{2}=\sqrt{3}$.
∴△ABC的面积的取值范围是(0,$\sqrt{3}$].
故选:B.
点评 本题考查两角和的正切,考查正弦定理在求解三角形中的应用,是中档题.
练习册系列答案
相关题目
5.已知变量x,y满足条件$\left\{\begin{array}{l}x≥1\\ x-y≤0\\ x+2y-9≤0\end{array}\right.$则x+3y的最大值是( )
| A. | 4 | B. | 8 | C. | 12 | D. | 13 |
3.设集合A={x∈R|x>0},B={x∈R|x2≤1},则A∩B=( )
| A. | (0,1) | B. | (0,1] | C. | [-1,1] | D. | [-1,+∞) |
7.设i为虚数单位,则复数(-2i-1)•i的共轭复数为( )
| A. | -2-i | B. | 2-i | C. | -2+i | D. | 2+i |
4.已知x=-3,x=1是函数f(x)=sin(ωx+φ)(ω>0)的两个相邻的极值点,且f(x)在x=-1处的导数f'(-1)>0,则f(0)=( )
| A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{2}}}{2}$ |