题目内容

15.△ABC的三个内角A、B、C,所对的边分别是a、b、c,若c=2$\sqrt{3}$,tanA+tanB=$\sqrt{3}$-$\sqrt{3}$tanAtanB,则△ABC的面积的取值范围是(  )
A.[$\sqrt{3}$,+∞)B.(0,$\sqrt{3}$]C.($\frac{1}{2}$,$\sqrt{3}$]D.(0,$\frac{\sqrt{3}}{2}$]

分析 由已知条件求得C,再由余弦定理可得ab的范围,代入三角形面积公式得答案.

解答 解:由tanA+tanB=$\sqrt{3}$-$\sqrt{3}$tanAtanB,得tanA+tanB=$\sqrt{3}$(1-tanAtanB),
∴tan(A+B)=$\sqrt{3}$,即tanC=-$\sqrt{3}$.
∵0<C<π,∴C=$\frac{2π}{3}$.
则sinC=$\frac{\sqrt{3}}{2}$.
又c=2$\sqrt{3}$,由余弦定理可得:$(2\sqrt{3})^{2}={a}^{2}+{b}^{2}-2ab•cos\frac{2π}{3}$,
即a2+b2+ab=12,
∴12=a2+b2+ab≥3ab,得ab≤4.
则${S}_{△ABC}=\frac{1}{2}ab•sinC≤\frac{1}{2}×4×\frac{\sqrt{3}}{2}=\sqrt{3}$.
∴△ABC的面积的取值范围是(0,$\sqrt{3}$].
故选:B.

点评 本题考查两角和的正切,考查正弦定理在求解三角形中的应用,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网