题目内容

如果函数f(x)对任意两个不等实数x1,x2,且x1,x2∈(a,b)都有x1f(x1)+x2f(x2)>x1f(x2+x2f(x)1),则称函数f(x)为区间(a,b)上的“G”函数.给出下列命题:①f(x)=2x-sinx是R上的“G”函数;②f(x)=
x2+4x(x≥0)
x-1,x<0
是R上的“G”函数;③f(x)=
2x(x≥1)
2x+1,x<1
是R上的“G”函数;④若函数f(x)=ex-ax-2是R上的“G”函数,则a≤0.其中正确的个数为(  )
A、1B、2C、3D、4
考点:进行简单的合情推理
专题:计算题,推理和证明
分析:不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)等价为(x1-x2)[f(x1)-f(x2)]>0,即满足条件的函数为单调递增函数,判断函数的单调性即可得到结论.
解答: 解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立,
∴不等式等价为(x1-x2)[f(x1)-f(x2)]>0恒成立,
即函数f(x)是定义在R上的增函数.
①f′(x)=2-cosx>0,∴f(x)=2x-sinx是R上的“G”函数;
②f(x)=
x2+4x(x≥0)
x-1,x<0
是定义在R上的增函数,∴是R上的“G”函数;
③f(x)=
2x(x≥1)
2x+1,x<1
不是定义在R上的增函数,∴不是R上的“G”函数;
④若函数f(x)=ex-ax-2是R上的“G”函数,则f′(x)=ex-a>0,∴a≤0,正确.
故选:C.
点评:本题主要考查函数单调性的应用,将条件转化为函数的单调性的形式是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网