题目内容
已知实数x,y满足约束条件
,则z=x-y的最大值是 .
|
考点:简单线性规划
专题:不等式的解法及应用
分析:根据二元一次不等式组表示平面区域,画出不等式组表示的平面区域,由z=x-y得y=x-z,利用平移求出z最大值即可.
解答:
解:不等式对应的平面区域如图:(阴影部分).
由z=x-y得y=x-z,平移直线y=x-z,
由平移可知当直线y=x-z,经过点A时,
直线y=x-z的截距最小,此时z取得最大值,
由
,解得
,
即A(3,-1)代入z=x-y得z=3-(-1)=4,
即z=x-y的最大值是4,
故答案为:4
由z=x-y得y=x-z,平移直线y=x-z,
由平移可知当直线y=x-z,经过点A时,
直线y=x-z的截距最小,此时z取得最大值,
由
|
|
即A(3,-1)代入z=x-y得z=3-(-1)=4,
即z=x-y的最大值是4,
故答案为:4
点评:本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.
练习册系列答案
相关题目
设椭圆
+
=1(a>b>0)的离心率为
,且它的一个焦点坐标是(1,0),则此椭圆的方程为( )
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
方程x2+(m-3)x+m=0有两个正实数根,则m的取值范围是( )
| A、0≤m<1 |
| B、0<m<1 |
| C、0<m≤1 |
| D、0≤m≤1 |