题目内容

方程x2+(m-3)x+m=0有两个正实数根,则m的取值范围是(  )
A、0≤m<1
B、0<m<1
C、0<m≤1
D、0≤m≤1
考点:一元二次方程的根的分布与系数的关系
专题:计算题,不等式的解法及应用
分析:由已知中关于x的方程x2+(m-3)x+m=0的两个实数根是正数,则方程的△≥0,且方程的两根x1,x2满足x1+x2>0,x1•x2>0,由此构造一个关于m的不等式组,解不等式组即可得到实数m的取值范围.
解答: 解:若关于x的方程x2+(m-3)x+m=0的两个实数根是正数,
即x1>0,x2>0,
△=(m-3)2-4m≥0
x1+x2=3-m>0
x1x2=m>0
,即有
m≥9或m≤1
m<3
m>0

解得0<m≤1.
故实数m的取值范围是(0,1]
故选C.
点评:本题考查的知识点是一元二次方程的根的分布与系数的关系,韦达定理,其中根据已知条件,结合一元二次方程的根的个数与△的关系及韦达定理,构造一个关于m的不等式组,是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网