题目内容

20.已知正项数列{an}的前n项和为Sn,且a1=2,an2=4Sn-1+4n(n≥2).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求a2+a5+a8+…+a89的值.

分析 (Ⅰ)根据数列递推公式可得an-an-1=2(n≥3),继而得到{an}是以2为首项,以2为公差的等差数列,问题得以解决;
(Ⅱ)根据等差数列的求和公式计算即可.

解答 解:(Ⅰ)因为${a_n}^2=4{S_{n-1}}+4n(n≥2)$,①${a_{n-1}}^2=4{S_{n-2}}+4(n-1)(n≥3)$,②
所以①-②得,${a_n}^2-{a_{n-1}}^2=4{a_{n-1}}+4$,
即${a_n}^2={({a_{n-1}}+2)^2}$,
因为an>0,所以an=an-1+2,即an-an-1=2(n≥3),
又由a1=2,${a_n}^2=4{S_{n-1}}+4n$,
得${a_2}^2=4{S_1}+8=16$,所以a2=4,a2-a1=2,
所以{an}是以2为首项,以2为公差的等差数列,
所以an=2+(n-1)×2=2n.
(Ⅱ)由(Ⅰ)知an=2n,
所以a2+a5+a8+…+a89=4+10+16+…+178=$\frac{(4+178)×30}{2}=2730$.

点评 本题考查数列的通项和求和的关系,考查数列的求和方法,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网