题目内容
已知定义在R上的函数f(x)满足f[f(x)]=xf(x)+1,则方程f(x)=0的实根个数为( )
| A、0 | B、1 | C、2 | D、4 |
考点:根的存在性及根的个数判断
专题:
分析:设设函数的零点为x0,则f(x0)=0,
赋值思想:x=0,代入f[f(x)]=xf(x)+1可得f(1)=1,
x=1,代入f[f(x)]=xf(x)+1可得:f[f(1)]=1×f(1)+1,即f(1)=1×1+1=2,与f(1)=1,矛盾,判断无零点.
赋值思想:x=0,代入f[f(x)]=xf(x)+1可得f(1)=1,
x=1,代入f[f(x)]=xf(x)+1可得:f[f(1)]=1×f(1)+1,即f(1)=1×1+1=2,与f(1)=1,矛盾,判断无零点.
解答:
解:∵f[f(x)]=xf(x)+1,
∴设函数的零点为x0,
则f(x0)=0,
∴f[f(x0)]=x0f(x0)+1,
f(0)=x0×0+1=1,
把x=0代入f[f(x)]=xf(x)+1可得f(1)=1,
x=1,代入f[f(x)]=xf(x)+1可得:f[f(1)]=1×f(1)+1,
即f(1)=1×1+1=2,与f(1)=1,矛盾.
∴函数f(x)无零点,
方程f(x)=0的实根个数为0
故选:A
∴设函数的零点为x0,
则f(x0)=0,
∴f[f(x0)]=x0f(x0)+1,
f(0)=x0×0+1=1,
把x=0代入f[f(x)]=xf(x)+1可得f(1)=1,
x=1,代入f[f(x)]=xf(x)+1可得:f[f(1)]=1×f(1)+1,
即f(1)=1×1+1=2,与f(1)=1,矛盾.
∴函数f(x)无零点,
方程f(x)=0的实根个数为0
故选:A
点评:本题考查了抽象函数的零点的求解判断,赋值思想,反正法,属于难题.
练习册系列答案
相关题目
已知a=21.5,b=log21.5,c=log1.51.2,则( )
| A、a<b<c |
| B、c<b<a |
| C、c<a<b |
| D、b<c<a |
如果实数x,y满足约束条件
,那么目标函数z=2x-y的最大值为( )
|
| A、-3 | B、-2 | C、1 | D、2 |
下列四条直线中,哪一条是双曲线x2-
=1的渐近线?( )
| y2 |
| 4 |
A、y=-
| ||
B、y=-
| ||
| C、y=2x | ||
| D、y=4x |