题目内容

16.如图,在直三棱柱ABC-A1B1C1中,AB=1,BC=2,BB1=3,∠ABC=90°,点D为侧棱BB1上的动点,当AD+DC1最小时,三棱锥D-ABC1的体积为$\frac{1}{3}$.

分析 将直三棱柱ABC-A1B1C1展开成矩形ACC1A1,如图,连结AC1,交BB1于D,此时AD+DC1最小,当AD+DC1最小时,BD=1,此时三棱锥D-ABC1的体积:${V}_{D-AB{C}_{1}}$=${V}_{{C}_{1}-ABD}$,由此能求出结果.

解答 解:将直三棱柱ABC-A1B1C1展开成矩形ACC1A1,如图,
连结AC1,交BB1于D,此时AD+DC1最小,
∵AB=1,BC=2,BB1=3,∠ABC=90°,点D为侧棱BB1上的动点,
∴当AD+DC1最小时,BD=1,
此时三棱锥D-ABC1的体积:
${V}_{D-AB{C}_{1}}$=${V}_{{C}_{1}-ABD}$=$\frac{1}{3}×{S}_{△ABD}×{B}_{1}{C}_{1}$
=$\frac{1}{3}×\frac{1}{2}×AB×BD×{B}_{1}{C}_{1}$
=$\frac{1}{3}×\frac{1}{2}×1×1×2$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查几何体的体积的求法,考查空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力、空间思维能力,考查数数结合思想、函数与方程思想、化归与转化思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网