题目内容
2.焦点在x轴上,长、短半轴长之和为10,焦距为$4\sqrt{5}$,则椭圆的标准方程为( )| A. | $\frac{x^2}{6}+\frac{y^2}{4}=1$ | B. | $\frac{x^2}{16}+\frac{y^2}{36}=1$ | C. | $\frac{x^2}{36}+\frac{y^2}{16}=1$ | D. | $\frac{x^2}{49}+\frac{y^2}{9}=1$ |
分析 利用椭圆的简单性质列出方程,求解即可.
解答 解:焦点在x轴上,长、短半轴长之和为10,焦距为$4\sqrt{5}$,
可得a+b=10,2c=4$\sqrt{5}$,c=2$\sqrt{5}$,即a2-b2=20,
解得a2=36,b2=16,
所求椭圆方程为:$\frac{x^2}{36}+\frac{y^2}{16}=1$.
故选:C.
点评 本题考查椭圆的简单性质的应用,椭圆方程的求法,考查计算能力.
练习册系列答案
相关题目
12.已知在△ABC中,∠ACB=$\frac{π}{2}$,AB=2BC,现将△ABC绕BC所在直线旋转到△PBC,设二面角P-BC-A大小为θ,PB与平面ABC所成角为α,PC与平面PAB所成角为β,若0<θ<π,则( )
| A. | $α≤\frac{π}{3}$且$sinβ≤\frac{{\sqrt{3}}}{3}$ | B. | $α≤\frac{π}{3}$且$sinβ<\frac{{\sqrt{3}}}{3}$ | C. | $α≤\frac{π}{6}$且$β≥\frac{π}{3}$ | D. | $α≤\frac{π}{6}$且$β<\frac{π}{3}$ |
13.设函数f(x)是定义在R上的奇函数,则下列结论中一定正确的是( )
| A. | 函数f(x)+x2是奇函数 | B. | 函数f(x)+|x|是偶函数 | ||
| C. | 函数x2f(x)是奇函数 | D. | 函数|x|f(x)是偶函数 |
10.已知命题p:?x∈R,sinx≤1,则¬p为( )
| A. | ?x∈R,sinx≤1 | B. | ?x∈R,sinx>1 | C. | ?x∈R,sinx≥1 | D. | ?x∈R,sinx>1 |
11.若双曲线$\frac{x^2}{3}-{y^2}=1$的左焦点在抛物线y2=2px的准线上,则p的值为( )
| A. | 2 | B. | 3 | C. | 4 | D. | $4\sqrt{2}$ |