题目内容

12.已知在△ABC中,∠ACB=$\frac{π}{2}$,AB=2BC,现将△ABC绕BC所在直线旋转到△PBC,设二面角P-BC-A大小为θ,PB与平面ABC所成角为α,PC与平面PAB所成角为β,若0<θ<π,则(  )
A.$α≤\frac{π}{3}$且$sinβ≤\frac{{\sqrt{3}}}{3}$B.$α≤\frac{π}{3}$且$sinβ<\frac{{\sqrt{3}}}{3}$C.$α≤\frac{π}{6}$且$β≥\frac{π}{3}$D.$α≤\frac{π}{6}$且$β<\frac{π}{3}$

分析 可设BC=a,可得AB=PB=2a,AC=CP=$\sqrt{3}$a,过C作CH⊥平面PAB,连接HB,则PC与平面PAB所成角为β=∠CPH,由CH<CB,可得sinβ的范围;由二面角的定义,可得二面角P-BC-A大小为θ,即为∠ACP,设P到平面ABC的距离为d,根据等积法和正弦函数的定义和性质,即可得到PB与平面ABC所成角α的范围.

解答 解:在△ABC中,∠ACB=$\frac{π}{2}$,AB=2BC,
可设BC=a,可得AB=PB=2a,AC=CP=$\sqrt{3}$a,
过C作CH⊥平面PAB,连接HB,
则PC与平面PAB所成角为β=∠CPH,
且CH<CB=a,
sinβ=$\frac{CH}{CP}$<$\frac{a}{\sqrt{3}a}$=$\frac{\sqrt{3}}{3}$;
由BC⊥AC,BC⊥CP,
可得二面角P-BC-A大小为θ,即为∠ACP,
设P到平面ABC的距离为d,
由BC⊥平面PAC,
且VB-ACP=VP-ABC
即有$\frac{1}{3}$BC•S△ACP=$\frac{1}{3}$d•S△ABC
即$\frac{1}{3}$a•$\frac{1}{2}$•$\sqrt{3}$a•$\sqrt{3}$a•sinθ=$\frac{1}{3}$d•$\frac{1}{2}$•$\sqrt{3}$a•a,
解得d=$\sqrt{3}$sinθ,
则sinα=$\frac{d}{PB}$=$\frac{\sqrt{3}asinθ}{2a}$≤$\frac{\sqrt{3}}{2}$,
即有α≤$\frac{π}{3}$.
故选:B.

点评 本题考查空间的二面角和线面角的求法,注意运用定义和转化思想,以及等积法,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网