题目内容

7.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的三个顶点B1(0,-b),B2(0,b),A(a,0),焦点F(c,0),且B1F⊥AB2,则椭圆的离心率为$\frac{{\sqrt{5}-1}}{2}$.

分析 利用已知条件列出方程,通过椭圆的几何量的关系求解椭圆的离心率即可.

解答 解:椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的三个顶点B1(0,-b),B2(0,b),A(a,0),焦点F(c,0),且B1F⊥AB2
可得:$\overrightarrow{{B}_{1}F}•\overrightarrow{A{B}_{2}}$=0,即b2=ac,即a2-c2-ac=0,
可得e2+e-1=0,e∈(0,1),
解得e=$\frac{{\sqrt{5}-1}}{2}$.
故答案为:$\frac{{\sqrt{5}-1}}{2}$.

点评 本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网