题目内容
“x<0”是“ln(x+1)<0”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |
考点:充要条件
专题:计算题,简易逻辑
分析:根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.
解答:
解:∵x<0,∴x+1<1,当x+1>0时,ln(x+1)<0;
∵ln(x+1)<0,∴0<x+1<1,∴-1<x<0,∴x<0,
∴“x<0”是ln(x+1)<0的必要不充分条件.
故选:B.
∵ln(x+1)<0,∴0<x+1<1,∴-1<x<0,∴x<0,
∴“x<0”是ln(x+1)<0的必要不充分条件.
故选:B.
点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.
练习册系列答案
相关题目
若tanθ=
,则
=( )
| 3 |
| sin2θ |
| 1+cos2θ |
A、
| ||||
B、-
| ||||
C、
| ||||
D、-
|
将函数y=sin2x+
cos2x(x∈R)的图象向右平移m(m>0)个单位长度后,所得到的图象关于原点对称,则m的最小值为( )
| 3 |
A、
| ||
B、
| ||
C、
| ||
D、
|
设复数z满足关系z•i=-1+
i,那么z等于( )
| 3 |
| 4 |
A、
| ||
B、-
| ||
C、-
| ||
D、
|
下列说法正确的是( )
| A、“a>b”是“a2>b2”的充分不必要条件 |
| B、命题“?x0∈R,x02+1<0”的否定是:“?x∈R,x2+1>0” |
| C、关于x的方程x2+(a+1)x+a-2=0的两根异号的充要条件是a<1 |
| D、若f(x)为R上的偶函数,则f(x-1)的图象关于直线x=1对称 |