题目内容

7.函数y=f(x)的定义域为R,f(-2)=3,对任意x∈R,f′(x)>3,则f(x)≥3x+9的解集为(  )
A.[-2,+∞)B.[-2,2]C.(-∞,-2]D.(-∞,+∞)

分析 设F(x)=f(x)-(3x+9),则F′(x)=f′(x)-3,由对任意x∈R总有f′(x)>3,知F′(x)=f′(x)-3>0,所以F(x)=f(x)-3x-9在R上是增函数,由此能够求出结果.

解答 解:设F(x)=f(x)-(3x+9)=f(x)-3x-9,
则F′(x)=f′(x)-3,
∵对任意x∈R总有f′(x)>3,
∴F′(x)=f′(x)-2>0,
∴F(x)=f(x)-3x-9在R上递增,
∵f(-2)=3,
∴F(-2)=f(-2)-3×(-2)-9=0,
∵f(x)≥3x+9,
∴F(x)=f(x)-3x-9≥F(-2)=0,
∴x≥-2.
故选:A.

点评 本题考查利用导数研究函数的单调性的应用,是中档题.解题时要认真审题,仔细解答,注意合理地进行等价转化.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网