题目内容
2.直线x+y=0被圆x2+y2=1截得的弦长为( )| A. | $\sqrt{3}$ | B. | 1 | C. | 4 | D. | 2 |
分析 直线x+y=0过圆x2+y2=1的圆心,截得的弦长为直径.
解答 解:圆x2+y2=1的圆心O(0,0),半径r=1,
圆心O(0,0)在直线x+y=0上,
∴直线x+y=0被圆x2+y2=1截得的弦长为直径,即2r=2.
故选:D.
点评 本题考查弦长的求法,考查圆、直线方程等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.
练习册系列答案
相关题目
9.已知数列{an}中,a1=1,an+1=2an-1,则a2=( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
10.某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比实验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如图,两个班人数均为60人,成绩80分及以上为优良.

(1)根据以上信息填好2×2联表,并判断出有多大的把握认为学生
(2)成绩优良与班级有关?
(3)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率.(以下临界值及公式仅供参考)
k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
(1)根据以上信息填好2×2联表,并判断出有多大的把握认为学生
(2)成绩优良与班级有关?
(3)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率.(以下临界值及公式仅供参考)
| P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
7.函数y=f(x)的定义域为R,f(-2)=3,对任意x∈R,f′(x)>3,则f(x)≥3x+9的解集为( )
| A. | [-2,+∞) | B. | [-2,2] | C. | (-∞,-2] | D. | (-∞,+∞) |
12.有两盒大小形状完全相同且标有数字的小球,其中一盒5个小球标的数字分别为1,2,3,4,5,另一盒4个小球标的数字分别为2,3,6,8,从两个盒子中随机各摸出一个小球,则这两个小球上标的数字为相邻整数的概率是( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{2}$ |