题目内容

12.一动圆与定圆F:(x+2)2+y2=1相外切,且与直线l:x=1相切,则动圆圆心轨迹方程为(  )
A.y2=4xB.y2=2xC.y2=-4xD.y2=-8x

分析 设P点坐标为(x,y),A(-2,0),动圆得半径为r,则根据两圆相外切及直线与圆相切得性质可得,PA=1+r,d=r,从而|PA|-d=1,由此能求出动圆圆心轨迹方程.

解答 解:设P点坐标为(x,y),A(-2,0),动圆得半径为r,
则根据两圆相外切及直线与圆相切得性质可得,PA=1+r,d=r
∴|PA|-d=1,即:$\sqrt{(x+2)^{2}+{y}^{2}}$-(1-x)=1,
化简得:y2=-8x.
∴动圆圆心轨迹方程为y2=-8x.
故选:D.

点评 本题考查动圆圆心轨迹方程的求法,考查直线方程、圆、两点间距离公式、两圆相外切、直线与圆相切等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网