题目内容

已知△ABC在中,角A,B,C所对的边分别为a,b,c,且acosC+
3
2
c=b,则角A(  )
A、
π
3
B、
π
6
C、
π
4
D、
π
2
考点:正弦定理
专题:解三角形
分析:通过已知表达式,利用正弦定理,以及三角形的内角和,转化sinB=sin(A+C),通过两角和的正弦函数,化简可求A的余弦值,即可求角A.
解答: 解:△ABC在中,由acosC+
3
2
c=b利用正弦定理可得 sinAcosC+
3
2
sinC=sinB,
而sinB=sin(A+C)=sinAcosC+cosAsinC.
可得
3
2
sinC=cosAsinC,sinC≠0,
所以
3
2
=cosA,A∈(0,π),所以A=
π
6

故选:B.
点评:本题考查正弦定理与两角和的正弦公式、诱导公式,三角形的内角和以及正弦定理的应用,考查计算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网