题目内容
有关数列的表达:
①数列若用图象表示,从图象上看是一群孤立的点;
②数列的项是有限的;
③若一个数列是递减的,则这个数列一定是有穷数列;
其中正确的个数( )
①数列若用图象表示,从图象上看是一群孤立的点;
②数列的项是有限的;
③若一个数列是递减的,则这个数列一定是有穷数列;
其中正确的个数( )
| A、0 | B、1 | C、2 | D、3 |
考点:数列的概念及简单表示法
专题:等差数列与等比数列
分析:①由于自变量n∈N*,即可判断出;
②数列的项是有限的,也可能是无限的;
③若一个数列是递减的,则这个数列一定是有穷数列,不一定,例如{
,n∈N*}.
②数列的项是有限的,也可能是无限的;
③若一个数列是递减的,则这个数列一定是有穷数列,不一定,例如{
| 1 |
| n |
解答:
解:①数列若用图象表示,从图象上看是一群孤立的点,正确;
②数列的项是有限的,也可能是无限的,不正确;
③若一个数列是递减的,则这个数列一定是有穷数列,不一定,例如{
,n∈N*}.
综上可得:只有①正确.
故选:B.
②数列的项是有限的,也可能是无限的,不正确;
③若一个数列是递减的,则这个数列一定是有穷数列,不一定,例如{
| 1 |
| n |
综上可得:只有①正确.
故选:B.
点评:本题考查了数列的函数特点性质,属于基础题.
练习册系列答案
相关题目
一个几何体的三视图如图所示,则该几何体的体积为( )

| A、9π-6 |
| B、36π-24 |
| C、12π-6 |
| D、12π-12 |
已知函数f(x)是R上的偶函数,且f(x+1)•f(x-1)=1,f(x)>0恒成立,则f(2011)=( )
| A、-1 | B、0 | C、1 | D、2 |
若(
-
)6展开式中的常数项是60,则实数a的值是( )
| x |
| 2 |
| a | ||
|
| A、±1 | ||
B、±
| ||
| C、±2 | ||
D、±2
|
已知△ABC在中,角A,B,C所对的边分别为a,b,c,且acosC+
c=b,则角A( )
| ||
| 2 |
A、
| ||
B、
| ||
C、
| ||
D、
|