题目内容

13.已知函数f(x)=Asin(ωx+φ)+B,(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图,则(  )
A.A=4B.ω=1C.φ=$\frac{π}{6}$D.B=4

分析 由函数的最值求出A、B,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.

解答 解:根据函数f(x)=Asin(ωx+φ)+B,(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象,
可得A=4-2=2,B=2,$\frac{1}{4}$•T=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{5π}{12}$-$\frac{π}{6}$=$\frac{π}{4}$,∴ω=2.
再根据五点法作图可得2•$\frac{π}{6}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{6}$,
故选:C.

点评 本题主要考查利由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A、B,由周期求出ω,由五点法作图求出φ的值,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网