题目内容
14.抛物线y2=4x上到焦点的距离等于3的点的坐标是( )| A. | (2$\sqrt{2}$,2) | B. | (2$\sqrt{2}$,2)或(-2$\sqrt{2}$,2) | C. | (2,2$\sqrt{2}$) | D. | (2,2$\sqrt{2}$)或(2,-2$\sqrt{2}$) |
分析 根据抛物线的定义可知该点到准线的距离与其到焦点的距离相等,进而利用点到直线的距离求得x的值,代入抛物线方程求得y值,即可得到所求点的坐标.
解答 解:∵抛物线方程为y2=4x,
∴焦点为F(1,0),准线为l:x=-1
∵抛物线y2=4x上一点P到焦点的距离等于3,
∴根据抛物线定义可知P到准线的距离等于3,
即x+1=3,解之得x=2,
代入抛物线方程求得y=±2$\sqrt{2}$,
故选D.
点评 本题主要考查了抛物线的简单性质.在涉及焦点弦和关于焦点的问题时常用抛物线的定义来解决.
练习册系列答案
相关题目
16.已知关于x的不等式x2-ax-b<0的解集是(2,3),则a+b的值是( )
| A. | -11 | B. | 11 | C. | -1 | D. | 1 |
9.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y+1≥0}\\{2x+y-1≤0}\end{array}\right.$,若直线y=k(x+1)把不等式组表示的平面区域分成上、下两部分的面积比为1:2,则k=( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |