题目内容

若集合A={x||x|+x>0},B={x|x2-5x+6≥0},则A∩B=(  )
A、{x|2≤x≤3}
B、{x|0≤x≤2或x≥3}
C、{x|0<x≤2或x≥3}
D、{x|x≥3}
考点:交集及其运算
专题:集合
分析:求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.
解答: 解:由A中的不等式变形得:|x|>-x,
∴x>0,即A={x|x>0},
由B中的不等式变形得:(x-2)(x-3)≥0,
解得:x≤2或x≥3,即B={x|x≤2或x≥3},
则A∩B={x|0<x≤2或x≥3}.
故选:C.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网