题目内容
已知数列{an}的前n项和为Sn,且满足a1=2,nan+1=Sn+n(n+1).
(1)求数列{an}的通项公式an;
(2)设Tn为数列{
}的前n项和,求Tn;
(3)设bn=
,证明:b1+b2+b3+…+bn<
.
(1)求数列{an}的通项公式an;
(2)设Tn为数列{
| an |
| 2n |
(3)设bn=
| 1 |
| anan+1an+2 |
| 1 |
| 32 |
考点:数列与不等式的综合,数列的求和
专题:点列、递归数列与数学归纳法
分析:(1)在已知递推式中取n=n-1得另一递推式,两式作差后可得an+1-an=2(n≥2),验证a2-a1=2,说明数列{an}是等差数列,则通项公式可求;
(2)把(1)中求得的an代入{
},然后利用错位相减法求数列{
}的前n项和Tn;
(3)把(1)中求得的an代入bn=
,利用裂项相消法求数列{bn}的前n项和,然后放缩证得不等式b1+b2+b3+…+bn<
.
(2)把(1)中求得的an代入{
| an |
| 2n |
| an |
| 2n |
(3)把(1)中求得的an代入bn=
| 1 |
| anan+1an+2 |
| 1 |
| 32 |
解答:
(1)解:由nan+1=Sn+n(n+1),得
(n-1)an=Sn-1+(n-1)n (n≥2),
两式相减得nan+1-(n-1)an=an+2n,即an+1-an=2(n≥2).
由
,得a2-a1=2.
∴对一切正整数n,有an+1-an=2,
故an=a1+2(n-1)=2n,
即an=2n(n∈N*);
(2)由(1),得
=
=
,
∴Tn=1+
+
+…+
①
①两边同乘以
,得
Tn=
+
+…+
+
②
①-②,得
Tn=1+
+
+…+
-
,
∴
Tn=
-
,
故Tn=4-
;
(3)由(1),得bn=
=
[
-
],
∴b1+b2+b3+…+bn=
(
-
+
-
+…+
-
)
=
(
-
)=
-
<
.
(n-1)an=Sn-1+(n-1)n (n≥2),
两式相减得nan+1-(n-1)an=an+2n,即an+1-an=2(n≥2).
由
|
∴对一切正整数n,有an+1-an=2,
故an=a1+2(n-1)=2n,
即an=2n(n∈N*);
(2)由(1),得
| an |
| 2n |
| 2n |
| 2n |
| n |
| 2n-1 |
∴Tn=1+
| 2 |
| 2 |
| 3 |
| 22 |
| n |
| 2n-1 |
①两边同乘以
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 22 |
| n-1 |
| 2n-1 |
| n |
| 2n |
①-②,得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| n |
| 2n |
∴
| 1 |
| 2 |
1-
| ||
1-
|
| n |
| 2n |
故Tn=4-
| n+2 |
| 2n-1 |
(3)由(1),得bn=
| 1 |
| 2n•2(n+1)•2(n+2) |
| 1 |
| 16 |
| 1 |
| n(n+1) |
| 1 |
| (n+1)(n+2) |
∴b1+b2+b3+…+bn=
| 1 |
| 16 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
| 1 |
| (n+1)(n+2) |
=
| 1 |
| 16 |
| 1 |
| 2 |
| 1 |
| (n+1)(n+2) |
| 1 |
| 32 |
| 1 |
| 16(n+1)(n+2) |
| 1 |
| 32 |
点评:本题是数列与不等式的综合题,训练了利用数列的前n项和求通项公式,考查了利用裂项相消法求数列的和,体现了放缩法证明不等式的解题思想,是中高档题.
练习册系列答案
相关题目
若集合A={x||x|+x>0},B={x|x2-5x+6≥0},则A∩B=( )
| A、{x|2≤x≤3} |
| B、{x|0≤x≤2或x≥3} |
| C、{x|0<x≤2或x≥3} |
| D、{x|x≥3} |