题目内容

20.虚数(x-2)+yi,其中x、y均为实数,当此虚数的模为1时,$\frac{y}{x}$的取值范围是$[{-\frac{{\sqrt{3}}}{3},0})∪({0,\frac{{\sqrt{3}}}{3}}]$.

分析 $\sqrt{(x-2)^{2}+{y}^{2}}$=1,即(x-2)2+y2=1,y≠0.设$\frac{y}{x}$=k≠0,即y=kx.可得$\frac{|2k|}{\sqrt{1+{k}^{2}}}$<1,解得k范围.

解答 解:∵$\sqrt{(x-2)^{2}+{y}^{2}}$=1,即(x-2)2+y2=1,y≠0.
设$\frac{y}{x}$=k≠0,即y=kx.
∴$\frac{|2k|}{\sqrt{1+{k}^{2}}}$<1,解得:$-\frac{\sqrt{3}}{3}$≤k≤$\frac{\sqrt{3}}{3}$,k≠0.
故答案为:$[{-\frac{{\sqrt{3}}}{3},0})∪({0,\frac{{\sqrt{3}}}{3}}]$.

点评 本题考查了虚数的定义、直线与圆的位置关系、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网