题目内容
8.分析 由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.
解答
解:∵A=$\frac{3π}{4}$,c=6,b=3$\sqrt{3}$,
∴在△ABC中,由余弦定理可得:a2=b2+c2-2b•ccos∠BAC=90.
∴a=3$\sqrt{10}$,
∵在△ABC中,由正弦定理可得:$\frac{b}{sinB}$=$\frac{a}{sin∠BAC}$,
∴sinB=$\frac{\sqrt{10}}{10}$,
∴cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{3\sqrt{10}}{10}$,
∵过点D作AB的垂线DE,垂足为E,由AD=BD,得:cos∠DAE=cosB,
∴Rt△ADE中,AD=$\frac{AE}{cos∠DAE}$=$\frac{3}{cosB}$=$\sqrt{10}$.
AD的长$\sqrt{10}$.
点评 本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基本知识的考查,属于中档题.
练习册系列答案
相关题目
18.已知Sn是等差数列{an}的前n项和,且S6>S7>S5,给出下列五个命题:
①公差d<0
②S11<0③S12>0
④数列{Sn}中的最大项为S11
⑤|a6|>|a7|
其中正确命题的个数是( )
①公差d<0
②S11<0③S12>0
④数列{Sn}中的最大项为S11
⑤|a6|>|a7|
其中正确命题的个数是( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |