ÌâÄ¿ÄÚÈÝ

2£®¶¨ÒåÐÂÔËË㣺$|{\begin{array}{l}{a_1}&{a_2}\\{{a_3}}&{a_4}\end{array}}|={a_1}{a_4}-{a_2}{a_3}$£¬Èôº¯Êý$f£¨x£©=|{\begin{array}{l}{\sqrt{3}cosx}&{-1}\\{{{sin}^2}x}&{sinx}\end{array}}|$£¬ÔòÏÂÁнáÂÛ²»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®º¯Êýy=f£¨x£©µÄ×îСÕýÖÜÆÚΪ¦Ð
B£®º¯Êýy=f£¨x£©µÄÒ»¸ö¶Ô³ÆÖÐÐÄΪ$£¨\frac{7¦Ð}{12}£¬\frac{1}{2}£©$
C£®º¯Êýy=f£¨x£©ÔÚÇø¼ä$[0£¬\frac{¦Ð}{2}]$Éϵ¥µ÷µÝÔö
D£®½«º¯Êýy=f£¨x£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»ºó£¬ËùµÃͼÏó¶ÔÓ¦µÄº¯ÊýΪżº¯Êý

·ÖÎö ¸ù¾Ýж¨Òåд³öy=f£¨x£©µÄ½âÎöʽ²¢»¯¼ò£¬ÔÙÅж¨ËĸöÑ¡ÏîÊÇ·ñÕýÈ·£®

½â´ð ½â£º¸ù¾Ýж¨ÒåÖª£¬
º¯Êý$f£¨x£©=|{\begin{array}{l}{\sqrt{3}cosx}&{-1}\\{{{sin}^2}x}&{sinx}\end{array}}|$
=$\sqrt{3}$cosxsinx+sin2x
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1-cos2x}{2}$
=sin£¨2x-$\frac{¦Ð}{6}$£©+$\frac{1}{2}$£¬
¶ÔÓÚA£¬º¯Êýy=f£¨x£©µÄ×îСÕýÖÜÆÚΪT=$\frac{2¦Ð}{2}$=¦Ð£¬AÕýÈ·£»
¶ÔÓÚB£¬º¯Êýy=f£¨x£©µÄ¶Ô³ÆÖÐÐÄΪ £¨$\frac{k¦Ð}{2}$+$\frac{¦Ð}{12}$£¬$\frac{1}{2}$£©£¬k¡ÊZ£¬
¡à$£¨\frac{7¦Ð}{12}£¬\frac{1}{2}£©$ÊÇf£¨x£©µÄÒ»¸ö¶Ô³ÆÖÐÐÄ£¬BÕýÈ·£»
¶ÔÓÚC£¬º¯Êýy=f£¨x£©µÄµ¥µ÷µÝÔöÇø¼äÊÇ[-$\frac{¦Ð}{6}$+k¦Ð£¬$\frac{¦Ð}{3}$+k¦Ð]£¬
µ¥µ÷µÝ¼õÇø¼äÊÇ[$\frac{¦Ð}{3}$+k¦Ð£¬$\frac{5¦Ð}{6}$+k¦Ð]£¬k¡ÊZ£»
¡àf£¨x£©ÔÚÇø¼ä[0£¬$\frac{¦Ð}{3}$]Éϵ¥µ÷µÝÔö£¬ÔÚ[$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{2}$]Éϵ¥µ÷µÝ¼õ£¬C´íÎó£»
¶ÔÓÚD£¬º¯Êýy=f£¨x£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»ºó£¬ËùµÃͼÏó¶ÔÓ¦µÄº¯ÊýΪ
y=sin[2£¨x-$\frac{¦Ð}{6}$£©-$\frac{¦Ð}{6}$]=-cos2x£¬ÊÇżº¯Êý£¬DÕýÈ·£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÁËж¨Ò庯ÊýµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÈý½ÇºãµÈ±ä»»ÓëÈý½Çº¯ÊýµÄͼÏóÓëÐÔÖʵÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø