题目内容
11.圆x2+y2+4x-2y-1=0上存在两点关于直线ax-2by+1=0(a>0,b>0)对称,则$\frac{1}{a}$+$\frac{4}{b}$的最小值为( )| A. | 3+2$\sqrt{2}$ | B. | 9 | C. | 16 | D. | 18 |
分析 圆x2+y2+4x-2y-1=0上存在两点关于直线ax-2by+1=0(a>0,b>0)对称,说明直线经过圆心,推出a+b=$\frac{1}{2}$,代入$\frac{1}{a}$+$\frac{4}{b}$,利用基本不等式,确定最小值,推出选项.
解答 解:由圆的对称性可得,
直线ax-2by+1=0必过圆心(-2,1),
所以a+b=$\frac{1}{2}$.
所以$\frac{1}{a}$+$\frac{4}{b}$=2($\frac{1}{a}$+$\frac{4}{b}$)(a+b)=2(5+$\frac{b}{a}$+$\frac{4a}{b}$)≥2(5+4)=18,
当且仅当$\frac{b}{a}$=$\frac{4a}{b}$,即2a=b时取等号,
故选D.
点评 本题考查关于点、直线对称的圆的方程,基本不等式,考查计算能力,是基础题.
练习册系列答案
相关题目
2.定义在实数集R上的奇函数分f(x),对任意实数x都有$f(\frac{3}{2}-x)=f(x)$,且满足f(1)>-2,$f(2)=m-\frac{3}{m}$,则实数m的取值范围是( )
| A. | 0<m<3或m<-1 | B. | 0<m<3 | C. | -1<m<3 | D. | m>3或m<-1 |
19.设偶函数f(x)的定义域为R,函数g(x)=$\frac{x}{{{x^2}+1}}$,则下列结论中正确的是( )
| A. | |f(x)|g(x)是奇函数 | B. | f(x)g(x)是偶函数 | C. | f(x)|g(x)|是奇函数 | D. | |f(x)g(x)|是奇函数 |
1.为了了解某地区心肺疾病是否与性别有关,在某医院随机对入院的50人进行了问卷调查,得到了如下的2×2列联表:
(1)用分层抽样的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女性的概率;
(3)为了研究心肺疾病是否与性别有关,请计算统计量k2,判断心肺疾病与性别是否有关?
附:临界值表参考公式:k2=$\frac{{n(ad-bc{)^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
| 患心肺疾病 | 患心肺疾病 | 合计 | |
| 男 | 20 | 5 | 25 |
| 女 | 10 | 15 | 25 |
| 合计 | 30 | 20 | 50 |
(2)在上述抽取的6人中选2人,求恰有一名女性的概率;
(3)为了研究心肺疾病是否与性别有关,请计算统计量k2,判断心肺疾病与性别是否有关?
| p(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |