题目内容

1.为了了解某地区心肺疾病是否与性别有关,在某医院随机对入院的50人进行了问卷调查,得到了如下的2×2列联表:
患心肺疾病患心肺疾病合计
20525
101525
合计302050
(1)用分层抽样的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女性的概率;
(3)为了研究心肺疾病是否与性别有关,请计算统计量k2,判断心肺疾病与性别是否有关?
p(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:临界值表参考公式:k2=$\frac{{n(ad-bc{)^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

分析 (1)根据分层抽样的方法,在患心肺疾病的人群中抽6人,先计算了抽取比例,再根据比例即可求出男性应该抽取人数.
(2)在上述抽取的6名学生中,女性的有2人,男性4人.女性2人记A,B;男性4人为c,d,e,f,列出其一切可能的结果组成的基本事件个数,通过列举得到满足条件事件数,求出概率.
(3)根据所给的公式,代入数据求出临界值,把求得的结果同临界值表进行比较,看出有多大的把握认为心肺疾病与性别有关.

解答 解:(1)在患心肺疾病的人群中抽6人,则抽取比例为$\frac{6}{30}$=$\frac{1}{5}$,
∴男性应该抽取20×$\frac{1}{5}$=4人….(4分)
(2)在上述抽取的6名学生中,女性的有2人,男性4人.女性2人记A,B;男性4人为c,d,e,f,则从6名学生任取2名的所有情况为:(A,B)、(A,c)、(A,d)、(A,e)、(A,f)、(B,c)、(B,d)、(B,e)、(B,f)、(c,d)、(c,e)、(c,f)、(d,e)、(d,f)、(e,f)共15种情况,其中恰有1名女生情况有:(A,c)、(A,d)、(A,e)、(A,f)、(B,c)、(B,d)、(B,e)、(B,f),共8种情况,
故上述抽取的6人中选2人,恰有一名女性的概率概率为P=$\frac{8}{15}$.….(8分)
(3)∵K2≈8.333,且P(k2≥7.879)=0.005=0.5%,
那么,我们有99.5%的把握认为是否患心肺疾病是与性别有关系的.….(12分)

点评 本题考查独立性检验知识以及古典概型及其概率计算公式,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网