题目内容
设数列{an}的前n项的和Sn与an的关系是Sn=-an+1-
,n∈N*.
(Ⅰ)求数列{an}的通项;
(Ⅱ)求数列{Sn}的前n项和Tn.
| 1 |
| 2n |
(Ⅰ)求数列{an}的通项;
(Ⅱ)求数列{Sn}的前n项和Tn.
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)利用Sn=-an+1-
,n∈N*,推导出a1=
,2nan-2n-1an-1=
,由此能求出数列{an}的通项;
(Ⅱ)由an=
,利用错位相减法能求出Sn=1-
,再利用分组求和法和错位相减法能求出Tn.
| 1 |
| 2n |
| 1 |
| 4 |
| 1 |
| 2 |
(Ⅱ)由an=
| n |
| 2n+1 |
| n+2 |
| 2n+1 |
解答:
解:(Ⅰ)∵数列{an}的前n项的和Sn与an的关系是Sn=-an+1-
,n∈N*,
∴当n=1时,S1=a1=-a1+1-
,解得a1=
,
当n≥2时,an=Sn-Sn-1=-an+an-1+
,
∴2nan-2n-1an-1=
,
∴2nan=2×a1+(n-1)×
=
+(n-1)×
=
,
∴an=
.
(Ⅱ)∵an=
,
∴Sn=
+
+
+…+
,①
Sn=
+
+
+…+
,②
①-②,得
Sn=
+
+
+…+
-
=
-
=
(1-
)-
,
∴Sn=1-
,
∴Tn=n-(
+
+…+
),③
Tn=
n-(
+
+…+
),④
③-④,得
Tn=
n-(
+
+
+…+
-
)
=
n-[
+
-
]
=
n-
-
+
+
,
∴Tn=n-2+
.
| 1 |
| 2n |
∴当n=1时,S1=a1=-a1+1-
| 1 |
| 2 |
| 1 |
| 4 |
当n≥2时,an=Sn-Sn-1=-an+an-1+
| 1 |
| 2n |
∴2nan-2n-1an-1=
| 1 |
| 2 |
∴2nan=2×a1+(n-1)×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| n |
| 2 |
∴an=
| n |
| 2n+1 |
(Ⅱ)∵an=
| n |
| 2n+1 |
∴Sn=
| 1 |
| 22 |
| 2 |
| 23 |
| 3 |
| 24 |
| n |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 23 |
| 2 |
| 24 |
| 3 |
| 25 |
| n |
| 2n+2 |
①-②,得
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n+1 |
| n |
| 2n+2 |
=
| ||||
1-
|
| n |
| 2n+2 |
=
| 1 |
| 2 |
| 1 |
| 2n |
| n |
| 2n+2 |
∴Sn=1-
| n+2 |
| 2n+1 |
∴Tn=n-(
| 3 |
| 22 |
| 4 |
| 23 |
| n+2 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 23 |
| 4 |
| 24 |
| n+2 |
| 2n+2 |
③-④,得
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 4 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n+1 |
| n+2 |
| 2n+2 |
=
| 1 |
| 2 |
| 3 |
| 4 |
| ||||
1-
|
| n+2 |
| 2n+2 |
=
| 1 |
| 2 |
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2n+1 |
| n+2 |
| 2n+2 |
∴Tn=n-2+
| n+4 |
| 2n+1 |
点评:本题考查数列的通项公式和前n项和的求法,是中档题,解题时要注意分组求和法和错位相减求和法的合理运用.
练习册系列答案
相关题目
函数y=log
cos(
-2x)的单调递增区间是( )
| 1 |
| 2 |
| 3π |
| 2 |
A、[kπ-
| ||||
B、[kπ-
| ||||
C、[kπ+
| ||||
D、[kπ+
|
下列命题中,真命题是( )
| A、?x0∈R,|x0|≤0 | ||
| B、?x∈R,2x>x2 | ||
C、a-b=0的充要条件是
| ||
| D、若p∧q为假,则p∨q为假(p,q是两个命题) |