题目内容
已知数列{an}各项为非负实数,前n项和为Sn,且S
-n2Sn-(n2+1)=0
(1)求数列{an}的通项公式;
(2)当n≥2时,求
+
+
+…+
.
2 n |
(1)求数列{an}的通项公式;
(2)当n≥2时,求
| 1 |
| S2-2 |
| 1 |
| S3-2 |
| 1 |
| S4-2 |
| 1 |
| Sn-2 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)将给出的等式分解因式可得Sn=n2+1,然后利用数列中的an和Sn的关系式求出an,注意要验证当n=1时a1是否满足,若满足通项写出一个式子,若不满足须写出分段函数的形式.
(2)由(1)已求出Sn=n2+1,代入所求式子后裂 求和即可.
(2)由(1)已求出Sn=n2+1,代入所求式子后裂 求和即可.
解答:
解:(1)∵Sn2-n2Sn-(n2+1)=0,
∴(Sn+1)[Sn-(n2+1)]=0,
又∵数列{an}各项为非负实数,∴Sn=n2+1,
∴当n≥2时,an=Sn-Sn-1=(n2+1)-[(n-1)2+1]=2n-1,
当n=1时,a1=S1=2,
∵当n=1时,2n-1=1≠a1,
∴an=
.
(2)∵Sn=n2+1,
∴当n≥2时,
+
+
+…+
=
+
+
+…+
=
[(
-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=
(
+
-
-
)
=
-
.
∴(Sn+1)[Sn-(n2+1)]=0,
又∵数列{an}各项为非负实数,∴Sn=n2+1,
∴当n≥2时,an=Sn-Sn-1=(n2+1)-[(n-1)2+1]=2n-1,
当n=1时,a1=S1=2,
∵当n=1时,2n-1=1≠a1,
∴an=
|
(2)∵Sn=n2+1,
∴当n≥2时,
| 1 |
| S2-2 |
| 1 |
| S3-2 |
| 1 |
| S4-2 |
| 1 |
| Sn-2 |
=
| 1 |
| 22-1 |
| 1 |
| 32-1 |
| 1 |
| 42-1 |
| 1 |
| n2-1 |
=
| 1 |
| 2 |
| 1 |
| 1 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-2 |
| 1 |
| n |
| 1 |
| n-1 |
| 1 |
| n+1 |
=
| 1 |
| 2 |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 3 |
| 4 |
| 2n+1 |
| 2n(n+1) |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要注意裂项求和法的合理运用.
练习册系列答案
相关题目