题目内容

4.已知实数x,y的取值如表所示.
x01234
y12465
(1)请根据上表数据在网格纸中绘制散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$.
注:回归方程为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}$,a=$\overline y-b\overline x$.

分析 (1)利用描点的方法绘制散点图;
(2)根据所给的这组数据求出利用最小二乘法所需要的几个数据,代入求系数b的公式,求得结果,再把样本中心点代入,求出a的值,得到线性回归方程.

解答 解:(1)散点图如下:

(2)$\overline x=\frac{0+1+2+3+4}{5}=2$,
$\overline y=\frac{1+2+4+6+5}{5}=3.6$,
$\sum_{i=1}^5{{x_i}{y_i}}=2+8+18+20=48$,
$\sum_{i=1}^4{x_i^2}=1+4+9+16=30$,
故$\widehat{b}$=$\frac{48-5×2×3.6}{30-5×4}$=1.2,则$\widehat{a}$=3.6-1.2×2=1.2,
所以回归直线的方程为$\hat{y}$=1.2x+1.2.

点评 本题考查线性回归方程,两个变量之间的关系,除了函数关系,还存在相关关系,通过建立回归直线方程,就可以根据其部分观测值,获得对这两个变量之间整体关系的了解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网