题目内容

已知函数f(x)=-x3+3x2+9x+a,在区间[-2,2]上的最大值为20,则实数a=(  )
A、2B、-2C、3D、-3
考点:利用导数求闭区间上函数的最值
专题:导数的概念及应用
分析:先求出端点的函数值f(-2)与f(2),比较f(2)与f(-2)的大小,然后根据函数f(x)在[-1,2]上单调递增,在[-2,-1]上单调递减,得到f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,建立等式关系求出a.
解答: 解:∵f′(x)=-3x2+6x+9.
令f′(x)<0,解得x<-1或x>3,
所以函数f(x)的单调递减区间为(-∞,-1),(3,+∞).
∵f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,
∴f(2)>f(-2).
因为在(-1,3)上f′(x)>0,所以f(x)在[-1,2]上单调递增,
又由于f(x)在[-2,-1]上单调递减,
因此f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有22+a=20,
解得a=-2.
故选:B
点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.以及在闭区间上的最值问题等基础知识,同时考查了分析与解决问题的综合能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网